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Abstract

The solar atmosphere shows anomalous variation in temperature, starting from the
5500 K photosphere to the million-degree Kelvin corona. The corona itself expands
into the interstellar medium as the free streaming solar wind, which modulates
and impacts the near-Earth space weather. The precise source regions of differ-
ent structures in the solar wind, their formation height, and the heating of the solar
atmosphere are inextricably linked and unsolved problems in astrophysics. Obser-
vations suggest correlations betweenCoronal holes (CHs), which are cool, intensity
deficit structures in the solar corona, with structures in the solarwind. Observations
also suggest the local plasma heating in the corona through power-law distributed
impulsive events. In this thesis, we use narrowband photometric, spectroscopic,
and disc-integrated emission of the solar atmosphere ranging fromNear Ultraviolet
to X-rays along with in-situ solar wind measurements to understand (i). the source
regions of the solar wind, (ii). the underlying mechanism of solar coronal heating,
and (iii). the differentiation in dynamics of CHswith the background Quiet Sun (QS)
regions, which do not show any significant signature of the solar wind. We leverage
machine learning and numerical modeling tools to develop solar wind forecasting
codes using interpretable AI, inversion codes to infer the properties of impulsive
events and to understand the differences in the thermodynamics of CHs and QS re-
gions. We finally present a unified scenario of solar wind emergence and heating in
the solar atmosphere and discuss the implications of inferences from this thesis.
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Chapter 1

Our friendly neighbourhood star: The
Sun

Tat savitur vareṇyaṃ We meditate on the effulgent
bhargo devasya dhīmahi glory of the divine Sun.
dhiyo yo naḥ pracodayāt May he inspire our understanding

-Rigveda 3.62.10

Thedisc of the Sun, rising from the East and setting in thewest, has been a source of
awe, inspiration, fear, and adoration to humans across space and time. This sheer
awesomeness of the Sun is captured in some measure by the verse quoted above,
attributed to a sage named Viśvāmitra Gāthinaḥ. The verse comes from one of the
oldest texts known to humanity, being recited, interpreted, andmeditated upon from
theBronze age till today. Cultures change and evolve in differentwayswith time, but
the inspiration this burning ball of fire provides remains. Indic philosophy attributes
various symbolism to the Sun. Sometimes, it is the modulator of our senses of
worldly perception, preventing us from looking inwards and contemplating. At other
times, it is the neutral witness within us that “observes” the world and that wemust
realize to lead an equanimous, sustainable life.

Inherently though, the Sun is a physical object with specific attributes. Cultures
across geographies sought to study the heavens and kept generating a better un-
derstanding of what it entails – including the Sun. In the past couple of hundred
or so years, primarily due to the development of telescopes, we have generated an
exponential increase in the understanding of what the Sun is.

The Sun is a gravitating ball of plasma with a diameter of ≈ 1.4 × 106 km, a
mass of ≈ 2 × 1030 kg, and at a distance of ≈ 150 × 106 km from us. It is com-
posed primarily of Hydrogen (≈ 70%), Helium (≈ 28%), and other elements (collec-
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CHAPTER 1. INTRODUCTION

tively called ‘metals’). Due to its high temperature, the gas in the Sun is ionized into
plasma. Thus, the Sun is also an excellent plasma physics laboratory – particularly
due to its proximity to the Earth.

The Sun is powered by the nuclear reactions that take place in the core of the
Sun. These reactions primarily convert Hydrogen to Helium, where themass deficit
gets converted to radiation. Nuclear fusion generates very high-energy γ-ray pho-
tons. These photons, as they try to escape the gravity of the Sun, keep undergo-
ing scattering due to the very small mean free path. Thus, these photons may be
trapped for millions of years before they start escaping. This region is called the
‘Radiative zone’ of the Sun, as shown in Fig. 1.1.

Figure 1.1: An artistic rendering of the various layers of the Sun. The solar interior is
depictedwith the core, radiative, and convective zonewith the tachocline. The solar
atmosphere starts from the photosphere, consisting of the temperature minimum
region, chromosphere, transition region, and the corona, and finally expands into
the free streaming solar wind. Various phenomena and features are also depicted
in the figure, briefly stated in the text at relevant locations. Art by Kelvinsong - Own
work, CC BY-SA 3.0.

As we move outwards from the core, we find that radiation no longer remains
the most efficient form of energy transport outwards. Plasma convection starts
occurring in the region known as the ‘Convection zone’ (see Fig. 1.1). In this zone,
the gradient of entropy/temperature satisfies the ‘Schwarzchild criterion,’ rendering
the convection of plasma as the dominant energy transport mode. The base of the
convection zone experiences a strong shear, for the convective zone marks the
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start of the Sun’s differential rotation. This region, called tachocline, is thought to
be the driver behind the activity of the Sun (Charbonneau 2014).

Along with plasma, the magnetic fields are also believed to be transported
through to the upper reaches of the Sun. Thus, plasma and magnetic fields start
moving outward in this region. Due to its plasma constitution, any small existing
magnetic fields are amplified and manifest through the surface. However, the pho-
tons still cannot escape – but their mean free paths have increased.

Finally, at some height, the optical-light photons start free streaming: i.e., the
photons have a larger mean free path than the length scale of the system. Hence,
the photons escape and take about 8minutes to reach us here on Earth. The height
on the Sun fromwhere these optical-light photons escape is called the photosphere
or the ‘Solar surface.’ This is the visible disc of the Sun one sees through a white-
light filter on a regular day1. An image taken by projecting the Sun onto a sheet
of paper is shown in Fig. 1.2 2 From here springs forth the solar atmosphere – the
subject of study in this thesis!

1.1 Solar atmosphere

The solar atmosphere is classified into multiple layers – the photosphere, chro-
mosphere, transition region, corona, and the solar wind. This classification is per-
formed based on the characteristic temperature and physical processes dictating
the dynamics of the given region. We shall keep referring to the graphic depicted
in Fig. 1.1 as a reference for the different layers of the solar atmosphere.

1.1.1 Photosphere

We have seen that the photosphere is where optical photons start free streaming.
It is≈ 500 km thick, at a temperature of≈ 5500 K, and exhibits a range of dynamics.
Typically, the dynamics are dictated by plasma convection, which regularly brings
new plasma and drains the old plasma. This convection forms patterns (≈ 1 Mm

1You must be very careful while seeing the Sun through the naked eye or a white light filter

2This image was taken during school-level science outreach conducted as a part of the Young
Astronomer’s Meeting - 2022 in ARIES, Nainital.
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Figure 1.2: The photosphere, projected through a telescope onto a sheet of paper.
Credit: Srashti Goyal/YAM/ARIES.

in size) called granules, basically ‘convection cells’ churning out plasma (Title et al.
1989).

The convection brings out hot plasma from the interior in the center of these
granules. Like a boiling pot of water, hot upflowing plasma then sinks down along
the edges of the granules as it cools down. These edges are called intergranular
‘lanes’ and appear darker due to lower temperature (Stein & Nordlund 1998).

Themagnetic field associatedwith granulation is not very strong (≤ 200Gauss).
However, there do exist regions with very strongmagnetic flux densities. These are
called sunspots, seen as dark spots on the photosphere. These regions contain a
strong magnetic field – of the order of 103 Gauss. The sunspots also exhibit very
complex dynamics, resulting in features like faculae (bright spots generally found
near sunspots) and light bridges (bright lanes near sunspots), to name a few. A
couple of sunspots may be seen in Fig. 1.2.

1.1.2 Chromosphere

Aswemove further upwards, we find the region called chromosphere (lit. sphere of
color). This wonderful name comes from an equally wonderful observation. During
a total solar eclipse where the Moon hides the photosphere, the chromosphere is
generally seen as a bright red-colored ring – thus giving it the name. This is shown
in Fig. 1.3. The gas temperature here is ≈ 104 K.
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Figure 1.3: The solar chromosphere and corona as observed during an eclipse.
Image taken by Luc Viatour.

The chromosphere is a region where a lot of spectral lines form – He I 10830
Å, Hα 6562 Å, Ca II H 3968 Å & K 3933 Å, Mg II h 2796 Å & k 2803 Å and C II 1334 Å/
1335 Å to name a few. The chromospheric emission is primarily in visible, IR, near-
UV, and UV. We observe a plethora of structures in this layer like fibrils (thread-like
fine structures), filaments (dark streaks of plasma seen over a bright background),
prominence (off-limb filaments seen in emission), plage (bright regions accompa-
nying sunspots), spicules (rapidly moving confined plasma), to name a few. The
chromosphere is also the region where many ions and neutral species are present
and interact with each other. The dynamics here are extremely complicated, with
the gas pressure and magnetic field competing for control.

1.1.3 Transition region

Further up in the atmosphere is the transition region, where the gas temperature
rises to more than 105 K. This is a geometrically very thin layer, spanning just a
couple of 100 km in height, within which the temperature difference occurs.

From the transition region onward, the atmosphere becomes optically thin to
radiation. This means that the radiation we receive is not coming from just a spe-
cific geometric height in the atmosphere. Instead, the radiation is an integral of
emission and absorption across the line of sight over which it is measured. The
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quantity that determines whether the radiation arises from an optically thin/thick
atmosphere is called optical depth.

In this region, themagnetic field starts to dominate the dynamics. This is quan-
tified by a term defined as plasma beta:

β =
Pgas

Pmag
, (1.1)

where the denominator corresponds to the magnetic pressure, which is defined (in
Gaussian units) as:

Pmag =
B2

8π
, (1.2)

where B is the magnetic field strength.

The transition region emits primarily in far-UV and Extreme-UV, in lines like the
Si IV 1394 Å/ 1403 Å, multiple O IV, S IV lines, and Fe IX 171 Å lines. However,
since this region is very dynamic, the optical depth also changes depending on the
dynamics, making inference of observations difficult in certain cases.

1.1.4 Corona

Even higher up lies the crown of the Sun – the solar corona. The corona can be
seen as a diffuse structure extending outwards during a total solar eclipse, seen in
Fig. 1.3. The solar corona is home to plasma at ≥ 106 K, β << 1. This causes the
dynamics of the corona to be dominated by the magnetic field dynamics. Further-
more, the very low resistivity in the solar corona causes the magnetic flux in a fluid
element to remain constant in time, resulting in the “frozen-flux condition”.

The general expectation of temperature trend from a radiating source is a drop
in temperature on moving further away from the source. Observation of spectral
lines in the corona, however, shows the existence of ions like Fe in high ionization
state, for ex: Fe X, Fe XI, Fe XIV to name a few (Swings 1945; Cor 1945). Such a high
ionization state is possible only if the source is at a temperature of 106 K or more.
Thus, the temperature of the solar atmosphere increases from the photosphere
to the chromosphere to the corona, as depicted in Fig. 1.4. Hence, such a steep
temperature rise begets the question of a ‘heating source’ to raise the temperature.
This, in a nutshell, is the coronal heating problem.

The solar corona is rich in features and appears drastically different from the
photosphere. The solar corona may be observed in different wavelengths depend-
ing on the different processes that occur at characteristic temperatures and den-
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Figure 1.4: Variation of temperature (solid curve), electron density (dashed curve),
and hydrogen density (dot-dashed curve) with height, as computed using the 1-D
model of Vernazza et al. (1981). Figure taken from Phillips et al. (2012).

sities. The corona is seen in visible light (Fig. 1.3) due to Thompson scattering of
photospheric emission by the hot coronal electrons. However, there also exist tran-
sitions of specific ions in visible light, for example, Fe X 6375 Å, Fe IV 5303 Å, which
give rise to spectral line emission. The EUV and X-ray emissions arise due to radia-
tive de-excitation of specific species – though the X-ray emission may also arise
from bremsstrahlung. The corona also has signatures in radio waves that arise
due to non-thermal accelerated electrons in coronal loops (see, for e.g. Mondal &
Oberoi 2021). Finally, specific transitions of the highly ionized spectral lines also
cause emission in infrared. The Fe XIII 10747 Å, for example, is an important coro-
nal diagnostic along with other lines arising from the same ion (Patel et al. 2021).
The dynamics of the corona, however, are typically dictated by the magnetic field.
Thus, the magnetic field strength and topology strongly affect the morphology of
structures that form in the corona. Hence, the characteristics of radiation from the
corona are inextricably linked to the underlying structure of the magnetic field.
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1.1.5 Solar wind

The solar corona keeps expanding outwards until it starts to become free stream-
ing. It has now become the solar wind, the modulator, and the destroyer of planetary
magnetospheres. The solar wind is just a stream of energetic particles and mag-
netic field emanating from the Sun. The existence of the solar wind was predicted
by Parker (1958) through theoretical considerations based on comet tail observa-
tions, for example, by Biermann (1957). It was later proved to be correct by the
Soviet probe Luna 1 just a few years later (Zirker 1977; Harvey 2007).

The solar wind is a predominantly radially out-flowing, supersonic motion of
plasma. In the solar wind, the gas andmagnetic pressure compete for control, with
the gas pressure generally winning. However, the solar wind also sweeps with the
magnetic field from the Sun and is magnetized plasma.

As it travels outwards, it encounters the magnetic field of different planets and
interacts with them. The interaction of the solar wind with Earth’s magnetic field re-
sults in the modulation of Earth’s magnetosphere, ionosphere, and thermosphere.
These modulations may be seen in their benign form as the beautiful aurora or
destruction of electric grids in their more devastating form. This interaction may,
however, be quantified asmeasurements of perturbations in the geomagnetic field.
Overall, the resulting interaction of the solar wind with Earth’s magnetosphere re-
sults in what is called ‘Space weather’ (NASA 2017). Thus, from an operational per-
spective, it becomes imperative to study, characterize, and forecast space weather
– and by its extension, its source, the Sun.

1.2 The tale of two phenomena

We have seen how varied and dynamic the solar atmosphere is. Various phenom-
ena occur in the corona, of which two, in particular, attract our attention: coronal
heating and solar wind emergence.

1.2.1 Coronal heating

The coronal heating, as described already in §.1.1.4, asks: “What gives rise to the
anomalous temperature of the solar corona?”. It has been a long-standing unsolved
problem in solar physics for more than 70 years. However, while the precise mech-
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anism of heat deposition is not well understood, clues may be obtained from ob-
serving the large solar flares.

Solar flares are large, dynamic events that occur in the corona – the strongest
of which are visible in X-rays but will generally be visible in EUV (Schadee et al.
1983). Solar flares occurwhen the coronalmagnetic field has been stressed enough
by motions in the photosphere, resulting in a lot of free energy being held in the
configuration (Benz 2008). Such a large amount of free energy causes currents to
be generated, leading to the explosive release of this energy as thermal and non-
thermal energy as a solar flare. Once the energy is released, the magnetic field
tends to go to a more stable configuration, sometimes awaiting more free energy
to build up. Typically, flares have a total energy of≥ 1030 ergs and last fromminutes
to hours depending on the wavelength of observation (Benz 2008). Such energy re-
leases are generally scale-free, implying the absence of a specific scale of energy
release (Aschwanden 2019). This means a ‘flare’ may occur over a range of length,
time, and energy scales. But do such processes occur at different scales?

It turns out that there is a vast ‘zoo’ of events that occur in the solar corona, cor-
responding to different physical scales. Like solar flares, milli- andmicroflares exist
as brightenings in the corona (see, for example Schadee et al. 1983; Chifor et al.
2006; Subramanian et al. 2018; Gupta et al. 2018a). Since solar flares and other
such energetic events convert magnetic energy to thermal energy in the corona,
one way of generating heating is through ubiquitous impulsive events occurring
across the corona. This is called the ‘Nanoflare heating paradigm’ and was pro-
posed by Prof. E. Parker in 1988 (see Parker 1988a). In this paradigm, the pho-
tospheric motions stress the magnetic field, leading to a buildup of free energy in
the system. Current sheets may form and dissipate the built-up energy as the field
gets tangled. This can occur through both Ohmic heating and magnetic reconnec-
tion (Parker 1972). The dominant energy release of the order of 1024 ergs is needed
to maintain the solar corona’s temperature.

The nanoflare paradigm, based on reconnection, falls into the ‘DC’ heating
mechanismof the solar corona (Klimchuk 2006a; Parnell &DeMoortel 2012; Hansteen
et al. 2010). However, the Sun also rings like a bell, andwaves are traveling through-
out the Sun. Some of these waves may leak into the atmosphere, depositing the
wave energy in the corona. Furthermore, various dynamics phenomena occurring
in the solar atmosphere may naturally give rise to waves, which may be dissipated
into the corona. This wave dissipation typically occurs due to the density gradi-
ent with height, leading to localized heating (Alfvén 1947; Osterbrock 1961; Antolin
et al. 2008). This paradigm is called the ‘AC’ heating mechanism (see for example
Van Doorsselaere et al. 2020, and references therein). AC heating may also give
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rise to energy release similar to nanoflares in very short time scales (Antolin et al.
2008). Hence, we shall follow Klimchuk (2006b) and call these small-scale energy
releases ‘Impulsive events.’

If one were to attempt to constrain the impact of impulsive heating of corona,
individual impulsive events would need to be counted and binned with energy to get
the total contribution – i.e., counting of individual events, right from flares (≈ 1033

ergs) to nanoflares (≈ 1024 ergs of energy). Such counting of events results in
power-law distribution of these impulsive events, i.e.,

dN

dW
∝ W−α.

If the solar corona were to be sufficiently heated by these impulsive events, there
must be more smaller events than larger, resulting in the necessity of α ≥ 2 (see,
e.g. Hudson 1991, for details).

Interestingly, a variety of αwas reported in the literature based on the observa-
tionsmade using different instruments sensitive to various energy bands, as shown
in Fig. 1.5. Clearly, the Hard X-ray observations show a much steeper slope than
the EUV or Soft X-ray (SXR) observations.

There are multiple complications associated with such simple counting statis-
tics. One issue is that plasma emission may be present only in certain energy
bands. Hence, an appropriate scaling must be performed to transform the mea-
sured luminosity energy to all wavelength integrated energy. Another major issue
becomes more prominent as we seek to isolate smaller and smaller events. As
events become smaller, our observations may not resolve them enough.

Furthermore, our instrument may even integrate over multiple events as ‘one’
big event simply because these small events fall in the same pixel or the same time
bin! Amore technical difficulty is partitioning thermal energy into radiative loss and
transport through thermal conduction. Thus, we can determine if impulsive events
are viable in heating the corona when such issues may be sufficiently resolved.

1.2.2 Formation and acceleration of solar wind

Allied to the above problem of coronal heating is the formation and acceleration
of solar wind. We have seen in §. 1.1.5 how Parker (1958) first proposed the ex-
istence of the solar wind and observed for the first time by the Soviet spacecraft
Luna 1 (Chapter 1 of Harvey 2007). Over the years, many spacecrafts like Vela 3,
Voyager, etc., performed observations of plasma parameters in the solar wind.
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Figure 1.5: Collation of measurements of impulsive events from different instru-
ments and temperatures, depicted as a distribution in the energy. Figure taken
from Aschwanden (2019).
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From then on, attempts have been made to investigate the exact location (on
the disc and in height) of the origin and acceleration of solar wind. The earliest cor-
relation of in-situ data with remote sensing observations was found by Krieger et al.
(1973), using X-ray images of the corona taken during a sounding rocket mission.

Figure 1.6: Left: A representative full disc AIA 193 Å intensity image with the CHs,
ARs, and QS depicted with bounding boxes. Right: Solar wind speed (radial axis)
measured by Ulysses as a function of heliolatitude over-plotted with the solar coro-
nal images. The color represents the magnetic field measurement at that latitude.
Image taken from McComas et al. (1998)

We must get back to the solar corona a bit to understand this observation. In
the left panel of Fig. 1.6, we show a typical solar corona image taken in the 193 Å
passband of AIA on April 26, 2015. This image shows two interesting, contrasting
features on the corona – the dark Coronal Holes (CHs) and the bright Active Re-
gions (ARs). The CHs are regions where the magnetic flux is almost radial and ap-
pear dark due to a deficit of emitters. Contrast these with ARs, where the magnetic
field lines predominantly form loops. These two regions exist on top of the back-
ground – i.e., they appear to be visual increments/decrements of intensity over the
background. This background, existing regardless of the presence of CHs or ARs,
is called the Quiet Sun (QS).

Krieger et al. (1973) found that the CHs have some form of correspondence
with the solar wind measured near Earth. Further developments resulted in a quan-
tification of the influenceof polar coronal holes on high-speed streams (Zirker 1977),
using data from Skylab. Generally, the magnetic field strength may be assumed to
fall off as an inverse square law with distance. This corresponds to the increase in
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the cross-section of a flux tube with radial distance. However, deviations from this
radial expansion lead to super-radial or sub-radial expansion of flux tubes, captured
by the flux tube expansion factor (fe) defined as:

fe =

(
R⊙

RSS

)2 (
Br(⊙)
Br(SS)

)
,

whereR is the distance of from the Sun, andBr is the radial magnetic field strength.
Here, ⊙ corresponds to the solar surface, while SS corresponds to the source sur-
face, the upper boundary from where the magnetic field lines are assumed to be-
come radial. Levine et al. (1977) showed that the solar wind speed is inversely
correlated with the flux tube expansion – i.e., the lesser the CH flux tubes expand,
the faster the solar wind.

This factor was leveraged by Wang & Sheeley Jr (1990), who further showed
that the CH area – a proxy for f−1

e , showed a good correlation with the solar wind
streams. Thus, the magnetic field topology of the CH showed a strong influence on
the observed solar wind. In the 1990s, Ulysses (McComas et al. 1998) performed,
for the first time, observations of the Sun from its equatorial to polar regions. It
found signatures of two kinds of wind: a fast wind which bellows from the polar
regions and the slowwind which coasts from the equatorial regions of the Sun (see
the right panel of Fig. 1.6). These two wind modalities do not just have different
speeds but also have different compositions, pointing to their origin at different
source regions. This was explored by Brooks et al. (2015), who sought to constrain
the source regions of slow wind. They thus trace back the slow wind in time while
considering only regions showing: (i). open flux, (ii). blueshifts (outflows), and (iii).
composition similar to slow wind. They found the edges of ARs to satisfy all three
criteria and thus to be potential sources of the slow wind. However, recently Bale
et al. (2019) showed that the equatorial CHs are also well correlated with the slow
windmeasurements. Thus, there is a lack of clarity on the sources of the slow solar
wind. However, there is clear evidence of the CHs being the source regions of at
least the fast solar wind.

Different regions on the Sun thus have different characteristic solar wind sig-
natures. This suggests that Parker’s theory of a radial expansion of the corona into
the solar wind is not quite complete. Parker’s theory essentially showed that strat-
ified, hot corona in the presence of gravity acts as a de-Laval Nozzle to accelerate
plasma to supersonic velocities. However, observations of coronal spectral lines
in CHs by SOHO (The Solar and Heliospheric Observatory) indicated that the veloc-
ities were much larger than those predicted by Parker’s theory (see Domingo et al.
1995). The theory was not enough to account for the differences in the velocities
of O VI and H I Lyα (Kohl et al. 1998), for example. Furthermore, Corti et al. (1997)
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observed the O VI line in CHs and found the outflow velocity increasing from ≈ 50
km/s at 1.5R⊙ to ≈ 140 km/s at 2R⊙. This leads us to two problems: From what
height does the solar wind start to form in the solar atmosphere? Andwhat physical
processes(es) give rise to this solar wind acceleration?

Figure 1.7: Chromospheric network, segmented from Si II overlaid (black) on
Doppler map from Ne VIII (color). The left figure is from a QS region, and the right
is from a polar CH. Figure adapted from Hassler et al. (1999).

SOHO was an extremely fruitful mission in providing major clues to answering
these questions. Hassler et al. (1999) studied the Doppler shift of Ne VIII (spectral
line in upper transition region) with the chromospheric magnetic network as seen
in Si II in a CH region. Since pertinent trends or variations need to be benchmarked
against a background, they perform their analysis for the CH and with a nearby
QS region. Hassler et al. (1999) found CHs to show excess outflows compared to
QS, clearly hinting at the origin of solar wind from the CHs. They also found excess
outflow at network boundaries and a clear correlation between network boundaries
and outflow (see Fig. 1.7). However, they could not find any clear correlation be-
tween Si II intensities and Ne VIII intensities. Hassler et al. (1999) thus present
an interesting conjecture: the energy put into the structure is either being utilized
for local heating or accelerating the material along open field lines, and hints to-
wards the unification of QS heating and solar wind acceleration. The input energy
may be used for QS heating or solar wind acceleration, possibly occurring at similar
heights.

Building on these results, Tu et al. (2005) studied the correlations between po-
tential field extrapolated magnetic field inside a CH and Si II intensity, C IV intensity,
and Ne VIII Doppler shift as a function of height. They show that these lines form
approximately at 4 Mm (Si), 4.5 Mm (C), and 20.6 Mm (Ne), respectively. Tu et al.
(2005) find that while the chromospheric lines (Si, C) have a tight correlation of their
intensity with the extrapolated magnetic field strength at the formation height, the
Ne VIII line showed a similar correlation only for the Doppler shift with the local in-
clination of themagnetic field. Thus, they found that the solar wind typically comes
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from open flux ‘funnels,’ which show a prominent signature much higher in the at-
mosphere. However, many low-lying loops are present lower in the atmosphere,
which give rise to a QS-like intensity structure.

These results give us three critical pieces of information: (i). The solar wind
mainly emerges from CHs, (ii). Clear signatures of the solar wind are seen in the
upper transition region lines like Ne VIII and (iii). A common underlying mechanism
for accelerating the solar wind and heating the corona is possibly at play. The CHs
are visibly darker than QS only in the corona or the upper transition region. Lower in
the atmosphere, this difference vanishes! Since the solar wind signatures are seen
in a spectral line like Ne VIII, we may also ask if similar signatures are seen much
lower in height – and, consequently, in much cooler lines.

The average properties of CHs andQS are very similar in the lower atmosphere.
However, Tripathi et al. (2021a) perform a comparative study using the Si IV lower
transition region line. CH and QS show no visible difference in Si IV line intensity or
velocity in an average sense. However, they find intensity and velocity differences
for regions with identical magnetic flux densities. Furthermore, they also find the
CHs to have subdued intensity for identical magnetic flux density with respect to
QS. They then analyzed the blue- and red shifts separately and found the CHs to
show excess blueshifts and subdued redshifts w.r.t QS. The intensities and veloc-
ities increase with increasing magnetic flux density. Finally, they found the non-
thermal width of Si IV to also increase with magnetic flux density, but no significant
differences were found between the CHs and QS.

These results showed potential signatures of the solar wind at the lower transi-
tion region itself. Similarly, the excess emission-excess blueshift dichotomy mani-
fests when the underlying magnetic flux density is accounted for. This is summa-
rized in Fig. 1.8 and suggests a unified mechanism of QS heating and solar wind
formation. Since the differences between QS and CH are markedly seen in higher
magnetic flux regions (corresponding to network regions) and not in the lowermag-
netic flux regions (inter-network regions), the difference arises due to statistics of
smaller and bigger loops (Wiegelmann & Solanki 2004). The inter-network region
contains short, low-lying loops and is common to CH and QS. However, the longer,
higher loops are predominantly in QS rather than the CH, suggesting the difference
arises due to a sheer difference in magnetic topology. This is also in line with Has-
sler et al. (1999).

Tripathi et al. (2021a) explain the observed differences in redshifts due to con-
densation of plasma from impulsive heating resulting from closed loop-closed loop
reconnection and the blueshifts due to open loop-closed loop reconnection result-
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Figure 1.8: Per radial absolute B-field bin distribution of QS (blue) and CH (red)
data from Si IV: a. Intensity; c. Average velocity; d. Redshift; e. Blueshift; f: Non-
thermal width. Figure b shows the distribution of velocity across all the pixels. Im-
age adapted from Tripathi et al. (2021a).
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ing in a cool jet. Thus, they found a signature (albeit not clear) of confined plasma
heating in QS and heated plasma escaping in CH, suggesting a unified model of QS
heating and solar wind emergence in CHs.

1.3 Outline of this thesis

With this backdrop, we seek to answer the following key science questions:

Q1. What are the source regions of the solar wind? Is it possible to forecast solar
wind properties given changing conditions in the solar atmosphere?

Q2. What is/are the underlying mechanism(s) of heating up of the solar corona?

Q3. How do the solar wind source regions’ dynamics and underlying generation
mechanisms compare with potentially non-sources of the solar wind?

Q4. What physical picture gives rise to these physical mechanisms and dynam-
ics?

With these questions in mind, the structure of the remainder of this thesis is
described below.

1.3.1 Chapter 2: Data and methods

In Ch. 2, we shall discuss three important aspects of our thesis, i.e., observational
data, big data methods, and numerical methods. We first discuss the Atmospheric
Imaging Assembly (AIA; Boerner et al. 2012a) and Helioseismic and Magnetic Im-
ager (HMI; Scherrer et al. 2012) onboard Solar Dynamics Observatory (SDO; Pesnell
et al. 2012) and describe the data products used from these instruments. We then
describe the Interface Region Imaging Spectrograph (IRIS; De Pontieu et al. 2014)
and the Solar X-ray Monitor (XSM; Mithun et al. 2021a) onboard Chandrayaan–
2 (Goswami & Annadurai 2011). We obtain data in different UV and EUV wave-
length bands from AIA, while we obtain the magnetic field data of the photosphere
fromHMI. From IRIS, we get spectral rasters in the NUV and FUVwavelengths along
with slit-jaw imaging data, while we obtain disc-integrated X-ray data fromXSM.We
then provide a broad overview of the area of “big data”, with a basic introduction
to Machine learning (ML) and Deep Learning (DL). Finally, we briefly introduce the
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MHD formalism and present the set of equations and approximations needed in
this thesis.

1.3.2 Chapter 3: The source regions of solar wind

In Ch. 3, we develop a DL model (called WindNet) to predict the solar wind speed
given full-disc EUV images in 193 and 211 Å of the solar corona from AIA. We
evaluate our model against auto-regressive and baseline models using Support
Vector Machine (Cortes & Vapnik 1995), Gradient boosted decision trees (Kulka-
rni 2017), Naive mean model, multi-lag auto-regression, and a 27-day persistence
scheme (Owens et al. 2013). We find that WindNet outperforms the benchmark
models, obtaining the best-fit correlation of 0.55±0.03 with the observed data. We
then investigate the importance attributed by WindNet to various parts of the input
images for fast and slow wind forecasts. We find that WindNet gives higher im-
portance to the coronal holes for fast wind prediction and to the active regions for
slow wind prediction. Furthermore, WindNet deems the CHs important for the fast
wind forecast ≈3 to 4 days before forecast. At the same time, the AR importance
is attributed closer to the day of forecasts for the slow wind. Thus, it suggests
that our model was able to learn some of the salient associations between coronal
and solar wind structures without built-in physics knowledge, demonstrating that a
DL-based approach with interpretable AI techniques may help us discover hitherto
unknown relationships in heliophysics data sets.

1.3.3 Chapter 4: The impulsively heated quiescent solar corona

In Ch. 4, the overarching theme is to understand the properties of impulsive events
and their possible roles in heating and maintaining the solar corona. We combine
the empirical impulsive heating forward model of Pauluhn & Solanki (2007) with a
machine-learning inversionmodel that allows uncertainty quantification. Using this
scheme, we infer the statistical properties of impulsive events which give rise to QS
light curves. Weperform this study using 171Å, 193Å, and 211ÅEUVpassbands of
the AIA and the X-ray emission in 1–1.3 keV, 1.3–2.3 keV, and 1–2.3 keV from XSM.
We find that there are≈2–3 impulsive events per minute in EUV, which increases to
≈25 events per minute in X-rays. These events last for 10–20minutes in EUV, while
the shortest events in X-rays last for 6minutes. The power law slope α peaks above
2 in the EUV passbands, with the α reducing from the cooler 171 Å passband to the
hotter 211 Å passband. This trend continues in X-rays, where the α becomes≤ 2.0.
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Our exploration of correlations among the various timescales and peak energy of
these events suggests that conduction losses dominate over radiative losses. We
find the event frequency is inversely related to the peak energy of these events, a
relation seen consistently in both EUV and X-rays. This result points to the presence
of an energy reservoir, which may be depleted through small frequent events or
large intermittent events. Owing to the flux calibrated measurements in X-rays, we
find that the typical amplitudes of these events lie in an energy range of 1021 –
1024 ergs, with a typical radiative loss of about ≈ 103 erg cm−2 s−1 in the energy
range of 1–2.3 keV. Thus, we find that the properties of these impulsive events
depend on the wavelength/energy of observations, with a regular gradation in their
properties with energy. These results provide constraints and present new insights
into the impulsive events maintaining the quiet corona.

1.3.4 Chapter 5: Unifying solar wind origin and coronal heating

In Ch. 5, we ask: How and where does the solar wind start, and what relation does it
have with the heating of the solar atmosphere? To this end, we perform a detailed
comparative study of CHs and QS to understand the underlying physical processes
using the chromospheric Mg II h & k and C II 1334 Å lines and transition region
using Si IV 1394 Å line for regions with identical photospheric absolute magnetic
flux density (|B|). We find CHs to have subdued intensity in all lines, with the dif-
ference increasing with line formation temperature/height and |B|. The chromo-
spheric lines show excess upflows and downflows in CH, while Si IV shows ex-
cess upflows (downflows) in CHs (QS), where the flows increase with |B|. The CHs
also show excess total widths in the C II line over QS for regions with identical |B|.
However, the C II spectral profiles are found to be more skewed and flatter than
a Gaussian, with no difference between CHs and QS. We further demonstrate that
the upflows (downflows) in Si IV are correlated with both upflows and downflows
(only downflows) in the chromospheric lines. CHs (QS) show larger Si IV upflows
(downflows) for similar flows in the chromosphere, suggesting a common origin to
these flows. These observations may be explained due to impulsive heating via in-
terchange (closed-loop) reconnection in CHs (QS), resulting in bidirectional flows at
different heights due to differences in magnetic field topologies. Finally, the kinked
field lines from interchange reconnection may be carried away as magnetic field
rotations and observed as switchbacks in the solar wind. We describe a unified
model for solar wind emergence, coronal heating, and near-Sun switchback forma-
tion based on these results.
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1.3.5 Chapter 6: 2.5 D self-consistent flux emergence

We have obtained evidence of a unified emergence of solar wind and heating of
the solar atmosphere through observations, empirical models, and deep learning.
However, we need to understand the underlying processes that dictate the thermo-
dynamics of solar wind emergence and heating in the corona. To this end, we per-
form numerical simulations of flux emergence in 2.5D in a stratified atmosphere in
this chapter. We embed different configurations of background fields in the setup to
capture the essential differences in the topology of CHs and QS and endow the sys-
tem with a flux sheet in the convection zone. The perturbation of the sheet results
in the interaction of the rising loop with the different background field topologies,
giving rise to different dynamics in these systems. The process’s thermodynamics
is governed by the reconnected flux, thermal conduction, and optically thin radiative
processes. We discuss the experiments with different terms, the thermal structure
of the resultant jet, and loops.

1.3.6 Chapter 7: Parting thoughts and paths for the future

Finally, in Ch. 7, we present a summary of the results obtained in this thesis and
put them into a global perspective of how much more we know of the Sun and He-
liosphere. We describe the caveats, the unanswered questions, and the new ques-
tions that opened up through this thesis while discussing the many future paths
awaiting exploration.
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Data and methods

ékaṃ sád To what is One,
víprā bahudhâ vadanty the wise give many a title

-Rigveda 1.164.46

Living beings interact with their surroundings and go about their daily lives.
This interaction involves a perception of various aspects of the near environment
of living beings at small scales and of the universe itself at large scales. Critical to
perception is the presence of sense organs – the environment produces signals in
various forms, of which some may be captured by through our individual senses.

If all we perceive is just a ‘lossy projection’ of the true environment, what do
we even mean by the ‘true’ environment? Is it possible to unambiguously define
something as the absolute truth? Dīrghatamas, the sage of yore to whom the quote
above is attributed, echoes a similar take sans the pessimism: the wise realize that
onemay perceive the ‘truth’ only through itsmanifestations captured by our senses.
For humans conditioned by our senses, asking for the existence of absolute truth is
futile – for the manifestations of this truth and the ability to perceive them change
with time. So while we only tend towards this absolute truth, we may never even
reach it precisely.

Perception of the environment is built up through measurements, as data. As-
trophysics has historically been a data-driven science. Across ages, humans have
looked up, mapped the heavens, and sought to understand why things happen the
way they happen. By putting together as many observations as possible, we hope
to generate a better understanding of the universe at large while uncovering the
true picture. Humans have a limited sense of perception and cannot hope to un-
derstand the universe just through our sense organs. However, we may translate
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these non-perceivable signals into something perceivable by our senses through
assumptions on how these signals originate. Light, along with different particles
like ions, electrons, and neutrinos, are the primary messengers from space we ob-
tain in astrophysics 1. Within the properties of these messengers are encoded var-
ious secrets of the cosmos, which we seek to decipher and understand.

The Sun and the heliospheric systems are very near the Earth and hence pro-
vide a massive influx of information in the form of remote sensing (through light)
and in-situ (through particle) measurements at various points in space and time.
The curiosity and a desire to understand these systems manifest, as a set of hy-
potheses, on different aspects of these systems, which may then be tested using
the data. However, the influx of data in solar physics is very large and falls in the
regime of big data. Hence, we employ tools and techniques to digest all this data
to develop analysis pipelines, extract features, and understand causal connections
within data.

With such tools to reduce, analyze andmake the data comprehensible, wemay
present a hypothesis to understand these observations. Hence, alongwith the data,
we also need modeling tools to generate “virtual systems,” which provide us with
potential observables to be compared with data.

In this chapter, we shall first go through the data used in this work (§2.1). Then,
we shall describe the big data tools (§2.2) which have been used extensively. Fi-
nally, we shall have a brief primer on the numerical modeling techniques (§2.3) to
present a physical picture of the underlying processes.

2.1 Data

As we have seen earlier, solar physics data may be primarily classified into remote
and in-situ measurements. The particulars of remote measurements depend on
the wavelength of light in consideration. Since the Earth’s atmosphere typically
only allows optical, microwave, and radio frequencies of light, we may study the
Sun in these wavelengths from the ground. As of today, numerous ground-based
telescopes are observing the Sun in various wavelengths, like the Udaipur Solar Ob-
servatory (USO; optical observations), Swedish Solar Telescope (SST; optical, near-
IR), Atacama Large Millimeter Array (ALMA; microwave), and the Daniel K Inouye
Solar Telescope (DKIST; optical, near-IR) to name a few.

1We also have gravitational waves now!
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Observations short-ward of visible cannot be conducted using ground-based
instrumentation. To conduct such observations, we seek observations from space.
From the first small satellite observations of the Sun using the Orbiting Solar Obser-
vatories (OSO) in the 1960s, the solar community has a rich heritage of space-based
missions. Some of these are the Solar Maximum Mission (SMM), Solar and He-
liospheric Observatory (SOHO), Hinode, Solar Dynamics Observatory (SDO), Inter-
face Region Imaging Spectrograph (IRIS), to the recently launched Chandrayaan–2,
Parker Solar Probe (PSP) and Solar Orbiter (SolO) to name a few.

The wavelength of light being probed and its generation mechanism is tightly
coupled to the particular layer of the solar atmosphere probed. The dynamics of
the atmosphere hence leave its imprint on the different properties of the light mea-
sured. Therefore, different instruments operate in different observation modes to
study different aspects of the light. The remote sensing data in solar physics pri-
marily comes in images in a spectral passband, spectroscopic data, polarimetric
data, and full-disc integrated spectra.

On the other hand, the in-situ measurements correspond to proton, electron,
and other ion properties, while also including measurements of the interplanetary
magnetic field. Contrary to remote observations, the in-situ observations are pre-
dominantly space-based since the Earth’s magnetic field acts as a shield against
these particles. Note, however, that perturbations in the geomagnetic field are still
measured on the ground, though we shall not be looking at such measurements as
a part of this thesis.

The in-situ measurements also have a rich heritage, starting from the Soviet
probe Luna – 1 in the late 1950s. A few of the instruments operating today include
the Advanced Composition Explorer (ACE), Wind, and the instruments like SWEAP,
IS⊙IS, and FIELDS onboard the PSP.

This thesis uses data from the instruments onboard SDO, IRIS, ACE, Wind, and
Chandrayaan – 2. In succeeding sections, we describe the salient features of some
of the instruments used in this thesis.

2.1.1 Solar Dynamics Observatory

Solar Dynamics Observatory (SDO; Boerner et al. 2012a) is a NASA mission de-
signed to understand the causes of solar variability in various spatiotemporal and
wavelength scales and its impacts on Earth and the near-Earth environment. It was
launched on the 11th of February 2010 from Cape Canaveral and has been provid-
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ing near-simultaneous and continuous observations since its launch. It is part of
NASA’s LivingWith a Star program and housesmultiple instruments onboard to ad-
dress its numerous scientific goals. Of these numerous instruments, we have used
data from two instruments extensively – the Atmospheric Imaging Assembly (AIA)
and the Helioseismic andMagnetic Imager (HMI). These two instrumentsmounted
on the SDO are depicted in a schematic shown in Fig. 2.1.

Figure 2.1: A schematic of SDO with the different instruments onboard. The AIA is
a set of four telescopes, while HMI is a single telescope, as labeled in the diagram.
The SDO also has the Extreme Ultraviolet Variability Experiment (EVE), which pro-
vides disc-integrated spectral data of the Sun in EUV. Solar arrays and relay com-
munications power the satellite through the High gain antennae. Image sourced
from the SDO mission website.

AIA is an imaging instrument in the form of four telescopes observing the var-
ious layers of the solar atmosphere in the Extreme UltraViolet (EUV) regime. AIA
generates high-resolution 4096x4096 full disc images in multiple passbands with
a plate scale of 0.6 arcsecs per pixel centered around specific spectral lines. It pro-
vides narrow-band images in seven EUV bands which are centered on transitions
from specific ions: 171 Å (Fe IX), 193 Å (Fe XI, XII, XXIV), 211 Å (Fe XI, XIV), 94 Å
(Fe X, Fe XVIII), 131 Å (Fe VIII, XXI), 304 Å(He II) and 335 Å (Mg VIII, Fe XVI) (Boerner
et al. 2012a; O’Dwyer et al. 2010a). These images are generated at a cadence of
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≈12 seconds, with an exposure time of ≈2 seconds in all filters in this work. AIA
also provides continuum observations 1700 Å and C IV (1600 Å) at similar spatial
resolution but at a lower time cadence. In this thesis, we extensively use the 171 Å,
193 Å, and 211 Å passband data since our science target regions are CHs and
QS (O’Dwyer et al. 2010a).

HMI is an instrument that measures the Sun in the form of filtergrams. It im-
ages across the Fe I 6173 Å line at six wavelength positions and obtains all four
components of Stoke’s vector. Using these observations, a variety of data products
are derived by the HMI team– including line-of-sight (LOS)magnetic fieldmeasure-
ment, vector magnetic field measurement, Doppler velocities, etc. Of these data
products, we have used the LOS magnetic field data product, which is available at
high spatial resolution (0.5 arcsecs per pixel) and at a cadence of 45 seconds.

Depending on the task, we may limit the resolution and time cadence of the
data used. For studies involving long-term variability (in the time scale of years), it
is not computationally feasible to use 4Kx4K data at a 12-second cadence. Thus,
we also employ a reduced dataset containing 512x512 AIA images generated by
Galvez et al. (2019). These images correspond to a plate scale of 4.8 arcsec/pixel
and a time cadence of 6 min.

2.1.2 Interface Region Imaging Spectrograph

The Interface Region Imaging Spectrograph (IRIS De Pontieu et al. 2014) is a NASA
small satellite explorermission that observes the dynamics of the lower solar atmo-
sphere. IRIS contains a spectrograph and a slit-jaw imager (SJI) and observes the
chromosphere, the transition region, and the lower corona. It mainly observes the
Sun in two passbands around 1400 Å and 2800 Å. IRIS provides data at high spatial
resolution (0.33 arcsec in FUV and 0.4 arcsecs in NUV), high time cadence (up to 1
second), and high spectral resolution (dispersion of ≈12 or 25 mÅ per pixel). The
deployed IRIS image and a schematic of the telescope are depicted in Fig. 2.2.

IRIS has three wavelength bands of observation: two in the Far UltraViolet
(FUV) in the 1331.7–1358.4 Å range and 1389.0–1407.0 Å range, and one in the
Near UltraViolet (NUV) in the 2782.7–2851.1 Å range. These bands are centered
around very strong spectral lines which sample the solar atmosphere.

IRIS provides spectra in two basic modes: (i). raster, and (ii). sit and stare. In
the raster mode, the slit is moved across a field of view, and spectra are read from
each pixel along the slit. If the displacement between consecutive slit positions is
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Figure 2.2: Left: The deployed configuration of IRIS. Right: A schematic of the
satellite depicting the guide telescope, spectrograph, and slit-jaw imager. Image
sourced from the IRIS mission website and NASA website.

of the order of the slit width, the mode is called dense rasteringmode. Otherwise, it
is called sparse rasteringmode. IRISmay, however, choose to place the slit at some
region and observe the Sun. In this mode, it may either choose to let the Sun rotate
to sweep across a region or correct for solar rotation while continuing to perform
the observations. This mode is called sit and stare mode.

We have used the spectral dense raster and SJI data corresponding to theMg II
h & k lines from the NUV band, the Si IV 1394 Å and the C II 1334 Å lines from FUV.
The spectra provide information in the formof intensity, Doppler shift, and linewidth
for this thesis.

2.1.3 Chandrayaan - 2

Chandrayaan - 2 is an Indian mission to the moon launched mid-2019 (Goswami
& Annadurai 2011). The mission was primarily focused on showcasing end-to-end
lunar mission capability and studying chemistry, thermo-physical characteristics,
and the properties of the tenuous lunar atmosphere. The mission consisted of two
parts – a lander rover and an orbiter. The lander (named “Vikram”) and the rover
(named “Pragyan”) were intended to land at the southern lunar pole, but the lan-
der deviated from the planned trajectory, resulting in a crash-landing on the moon.
The schematic of the complete setup and our instrument of interest is depicted in
Fig. 2.3.
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Figure 2.3: Left: The deployed configuration of Chandrayaan-2, with the lander
mounted on top of the orbiter. Right: The flight model of the X-ray Solar Monitor
(XSM) onboard the orbiter of Chandrayaan-2. Image sourced from the ISRO web-
site.

The orbiter, however, has been in a polar orbit around the moon and has been
collecting excellent data for a long time. Mounted on the orbiter is the instrument
Solar X-ray Monitor (XSM). XSM observes the Sun as a star in the energy range of
1–15 keV, with an energy resolution of ∼175 eV at 5.9 keV and a time cadence of
1 second. The X-ray emission observed by XSM is typical of the very hot corona,
and we select only the specific range of 1-2.3 keV for analysis in this thesis.

2.1.4 In-situ observations

All of the above instruments provide remote sensing observations of the Sun. As
mentioned early on, we have also used in-situ measurements of solar wind in this
thesis. The in-situ measurements primarily consist of solar wind and interplane-
tary magnetic field measurements – wind velocity andmagnetic field components.
Various instruments havemeasured these solar windmeasurements through time.
They have been collated into a common repository by NASA called the “OMNIWEB”
data facility at Goddard’s Space Physics Data Facility2.

2https://omniweb.gsfc.nasa.gov/hw.html
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2.2 Big data tools

We have used data in timescales ranging from seconds to years, with spatial scales
ranging from a couple hundred kilometers to hundreds of megameters. The data
is extremely multimodal, and finding salient associations between the data or be-
tween data and a presented hypothesis is a non-trivial task. Thus, analyzing this
data, finding associations, and extracting features from the data requires using
tools that can perform these actions fast and efficiently leverage the available com-
putation.

Machine learning (ML) is a set of techniques that seeks to find associations
in a dataset. These associations are found by iteratively optimizing a parameter
abstracting ameasure of performance or similarities in the data. The keyword here
is ‘iteratively’: the learning power of these techniques comes from a well-founded
optimization scheme that recursively updates the selected best solution. Broadly
speaking, the “learning paradigms” can be put into three categories: supervised
learning, unsupervised learning, and reinforcement learning.

Supervised learning involves finding associations between two sets of data,
typically between an “input” and an “output”. The inputs and outputs can be a bunch
of arrays, strings, time series, images, or even time series of images, and the ob-
jective would be to translate from one form of data to the other. To put it more
precisely, consider the full input dataset to correspond to a ‘distribution.’ In this
distribution, each data point is one sample. Similarly, the set of outputs would also
correspond to a distribution. In supervised learning, we are given a set of tuples of
data from the two distributions. The machine attempts to learn the correct trans-
formation from the input distribution to the output distribution. Supervised learning
comes in two main flavors – classification and regression.

Classification problem can be stated as follows: If there are N unique target
categories corresponding to the input dataset, which categorywill a given datapoint
correspond to? For example, given a small input cutout of a part of the Sun, would it
correspond to a flare, AR, QS, or CH? Thus, classification seeks to distribute inputs
to finite, discrete, categories. Regression problems can be understood as a gener-
alization of classification problem: what if the number of unique targets N → ∞?
Thus, the target output in a regression problem is a continuous-valued variable.

Unsupervised learning, on the other hand, involves performing operations on
one dataset alone. This would mean we have only one probability distribution,
whichwemay think of as an ‘input’ distribution. Unsupervised learning comes in dif-
ferent flavors. One application of unsupervised learning is to reduce the dimension-

28



CHAPTER 2. DATA

ality of the data. Consider a tabulated dataset with M rows and N columns. This
table can be visualized as the bunch of M points in an N dimensional space, where
each axis corresponds to one column of the table. Suppose these N columns are
not independent in a particular sense. In that case, dimensionality reduction asks
if there is a good, low-dimensional representation of the points, which ensures that
the resultant ‘new’ columns are independent in the same sense. Principal Com-
ponent Analysis (PCA) is one such example of an unsupervised learning method,
where the columns are checked for linear independence, and a linear combination
of the columns may be presented as a low-dimensional representation. Another
application of unsupervised learning comes in the form of a clustering problem.
Here, the assumption is that various data points are now closely associated with
local clusters. Thus, we ask if it is possible to ‘put a box’ around different close
associations and study the data. There is a zoo of algorithms that perform these
operations for both of these applications. These different ML problems are sum-
marized in Fig. 2.4, with simple examples. However, the interested reader may refer
to a standard text like Bishop (2006) or Prof. Gilbert Strang’s lectures on linear al-
gebra and learning from data3 for more details on ML.

Figure 2.4: A summary of the broad types of ML problems to which any general
problem can be decomposed.

Now, a subset of ML is called Deep learning (DL), an umbrella term for a broad

3May be found here: https://bit.ly/3TQwT2n
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class of techniques that use neural networks withmultiple hidden layers to perform
various tasks. A neural network, at its core, is mathematically a set of tensor con-
tractions sandwiched with non-linear function operations. Such sandwiches are
layered in series and give rise to the complex ‘memory’ of a neural network, which
readies it to learn from the data. The contractions are performed between the in-
put to the network and the free parameters of the particular layer, called weights
and biases. The weights are variables that undergo contraction with the inputs,
while biases are variables added as an offset to the product. Henceforth, when we
say ‘weights,’ we shall imply the presence of bias terms unless otherwise explicitly
stated.

Neural networks learn from the data throughan iterative update of theirweights
byminimizing an error or ametric term. The idea behind this iterative update is thus:
if the various error values for different weights are considered, they will form an
“error surface” in the space of weights. The optimal combination of weights would
then be the point that lies at the global minimum of this error surface. Assuming
such a minimum exists, we first calculate the local tangent of the error surface for
any random starting point on the error surface. This gives us the direction of the
largest increase, and hence we seek to move in the opposite direction. Eventually,
the network weights will converge to the global optimum after takingmany steps in
this direction. This algorithm is called gradient descent. For a weightwi at iteration
i and the corresponding error term ei at the same iteration, the weight at the next
iteration (wi+1) is given by:

wi+1 ← wi − α
∂ei
∂wi

,

where α is called the learning rate of the network, and control the magnitude of
weight update. While this is the core idea behind the “training procedure” of any
neural network, numerous algorithms have been implemented for training that have
better convergence properties.

Neural networks grew in prominence in the late 1980s and early 1990s and
were extensively employed by the computer vision community (see for example
LeCun et al. 1995, 1998, for some classics). However, their usage plummeted with
increasing computing needs and limited availability of data. However, there has
been a resurgence in neural networks since around the 2010s. This is due to the
increased availability of data, and perhapsmore importantly, of inexpensive compu-
tation in the form of Graphics Processing Units (GPUs) (see, for example Chellapilla
et al. 2006; Ciresan et al. 2011a; Krizhevsky et al. 2017). That the hardware used to
play Roadrash and Counterstrike would be crucial for deep learning is a testament
to the ingenuity of the human mind!
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In engineering and science questions dealing with ambiguous features, DL has
been found to outperformML algorithms that use hand-engineered features (Good-
fellow et al. 2016). In supervised learning tasks, DL algorithms often need no prior
information regarding the exact input-output mapping but instead try to discover
underlying relations through the training procedure outlined above. Prior informa-
tion can, however, be built into the model in a number of ways, e.g. (1) by providing
hand-engineered input features (which are generally physics-based), (2) construct-
ing a neural net with some layers that have been pre-trained and whose weights
are kept fixed during training (known as transfer learning, although the kind of pre-
training performed limits the amount of prior information shared), and (3) providing
external, physics-based constraints on the training procedure of the neural network
at hand.

While DL models are able to form associations between data, an increasing
complication of these models makes it difficult to inquire into the ‘why’ of model
decision-making. This area of research is known as research into ‘Interpretable
DL,’ which essentially seeks to understand the nature of conditioning of the model
parameters and understand why the model is providing a particular output for a
given input.

In this thesis, we useML and DL in threemajor ways. First, we have used unsu-
pervised ML methods to perform solar image segmentation, which serves to be a
preparatory step in performing downstream analysis. Second, we have developed
novel supervised DL forecasting codes trained on a large volume of remote sensing
and in-situ data. This model is also queried to understand the forecasts using in-
terpretable DL methods, to understand salient associations between the input and
output. Finally, we have used DL as an inversion scheme against statistical numer-
ical models. This helps us perform very fast parameter inference across a large
dataset very quickly while also providing us with uncertainties in the parameter es-
timates.

2.3 Numerical modelling techniques

With the huge volume of solar observations analyzed, we must also understand
them theoretically from the first principles. Such theoretical understanding is pos-
sible through the comparison of observations with predictions based on different
theories. Typically, this involves solving for the evolution of various particles like
electrons, ions, and neutrals with an appropriate set of dynamical equations sup-
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plemented by consistent initial and boundary conditions. However, we consider the
systems where the length scales are larger than the mean free path of these parti-
cles & the ion gyro radius, and time scales longer than the corresponding collisional
time-scale & ion gyro period. For such a system, the microphysics of interactions
may be averaged over, and the system is treated as a fluid continuum. Note that the
ion gyro radius is directly proportional to mass and hence is always a larger length
scale than the electron gyro radius (Marsch 2006).

Thus, the scales in consideration in this work are far larger than the kinetic
scales stated above. Apart from these constraints, let us also assume that the
typical velocity scale of the system is smaller than the speed of light in vacuum (c ≈
108 m s−1), i.e., in the non-relativistic regime. Finally, if the ratio of the typical length
to the timescale of variation of the electromagnetic field is much smaller than c,
we operate in the regime of “Magneto-Hydro-Dynamics” (MHD). The typical solar
coronal velocities are ≈ 104 m s−1, while the solar wind velocities are ≈ 105−106 m
s−1, which are far smaller than c.

In this framework of MHD, the plasma can yet again be studied as a single
fluid or multi-fluid. The plasma is assumed to be fully ionized in the single fluid
case. Since the plasma is collisional, the electrons and ions can be considered a
single fluid. The plasma contains ions, electrons, and neutral particles in the multi-
fluid case. While the ions and electrons undergo Coulomb interaction, the neutrals
interact through mechanical collisions. The upper transition region and the solar
corona are fully ionized, so a single fluid scheme works well. However, the chromo-
sphere is known not to be fully ionized. Thus, it needs to be treated as a multi-fluid
system. However, since the number of equations and variables increases enor-
mously, the MHD approximation is expanded to add new terms that abstract some
of the effects of partial ionization of the system (see, for example Martínez-Sykora
et al. 2012, for details). In this thesis, we focus only on a single fluid approximation
to study the response and dynamics of the upper transition region and the solar
corona.

Apart from plasma and the electromagnetic field, there is one more messen-
ger which adds complications – light. The radiation field starts to become free
streaming from the photosphere. The processes giving rise to radiation, especially
in the form of spectral lines, from the photosphere to the lower transition region
are strongly influenced by collisional and scattering processes. Hence, it is impor-
tant to consider the radiative transfer equation to simulate the lower atmosphere
correctly.

The excitation and de-excitation of species may occur through a variety of pro-
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cesses. Low in the atmosphere, collisions of ions with electrons and other ions are
prominent, while spontaneous de-excitation also occurs. Depending on the spec-
tral line of the ion in consideration, the dominant processes may be different. In
the corona, however, the low-density results in excitation primarily through colli-
sion and de-excitation through radiative transitions. This approximation is able to
explain most properties of the observed radiation in the corona and is called the
coronal approximation (see, for example Dere et al. 1997). Note that the emission
contribution also comes from the recombination of ions with free electrons and
bremsstrahlung (Landini & Monsignori Fossi 1970; Gronenschild & Mewe 1978).
However, do note that optical thickness depends on the number density of the
species along the line of sight and is subject to change depending on the dynamics
of the processes occurring in the solar atmosphere.

In this thesis, we concern ourselves with simulating the dynamics and thermo-
dynamics of the upper transition region and corona. Thus, we work in the coronal
approximation (Dere et al. 1997). As a consequence, we do not explicitly solve the
radiative transfer equation.

We first non-dimensionalise our variables using the unit density (ρ0 in g cm−3),
unit velocity (v0 cm s−1) and unit length (L0 cm). We normalize the pressure through
ρ0v

2
0 and magnetic field through

√
4πρ0v20 (Mignone et al. 2007).

The full set of dynamical equations we solve are:

∂

∂t


ρ

ρv
E

B

+∇ ·


ρv

ρv⊗ v− B⊗ B+
↔
I pt

(E + pt)v− B(v · B)
v⊗ B− B⊗ v


T

=


0

ρg
ρv.g−∇ · (ηJ× B)

∇.Fc −∇× (ηJ)− n2Λ(T ) + S

 ,

(2.1)
where ρ is plasma density, v is the velocity, B themagnetic field, η is the resistivity, g
is the gravity, ρ is the density, · indicating contraction and⊗ showing outer product.
All bolded quantities denote vectors, while

↔
I is the unit tensor. The number density

(n) and plasma density are related as ρ = nµmu, where mu is the atomic mass
unit, and µ is the mean molecular weight. The total pressure pt is defined as: pt =
p+B2/2, where p is the gas pressure, and the total energy E is defined as:

E = ρe+
ρv2

2
+

B2

2
.

The entropy e is defined through the equation of state as ρe = f(ρ, p). The current J
is defined as J = ∇×B, while Fc is the thermal conduction flux, Λ(T ) is the optically
thin radiative loss, and S corresponds to various other heating and cooling terms.
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Note that we have not included the terms involving fluid viscosity since this viscous
loss is expected to be less than the resistive, conductive, and radiative loss in the
solar corona (see, for example, the discussion in §3.4 in Marsch 2006).

In the MHD regime, the thermal conduction is highly anisotropic, with the con-
duction predominantly along the field lines than across. The conduction flux Fc is
then formulated as:

Fc = κ||b̂(b̂.∇T ) + κ⊥[∇T − b̂(b̂.∇T )], (2.2)

where b̂ = B/B, the unit normal in the direction of the magnetic field.

Finding closed-formsolutions to these equations for arbitrary initial and bound-
ary conditions is not tractable yet. Hence, we solve these equations numerically for
our problems. In this thesis, we use the PLUTO code (Mignone et al. 2007) devel-
oped at Dipartimento di Fisica, Torino University in a joint collaboration with INAF,
Osservatorio Astronomico di Torino and the SCAI Department of CINECA 4. The
code is written in C and uses flux-conserving Godunov-based finite volume meth-
ods to solve the MHD equations.

The PLUTO code has beenwritten in a verymodular format. It also has support
for parallel processing using Message Passing Interface (MPI) – thus making it
computationally efficient and faster to perform any MHD simulation.

We have developed a set of simulations comparing the effect of the inclusion
of different physical processes into the scenario of flux emergence and interaction
with a background magnetic field of different topologies. These different topolo-
gies are a proxy for different physical regions of interest on the Sun.

NOTE: ML and DL techniques would have been very difficult to use if not for
Open Source Software using Python. These codes are developed using standard
packages likeAstropy (Price-Whelan et al. 2018), Cython (Behnel et al. 2011),Jupyter (Kluyver
et al. 2016), Matplotlib (Hunter 2007),Multiprocessing (McKerns et al. 2012), Numpy (Har-
ris et al. 2020),OpenCV (Bradski 2000), Pytorch (Paszke et al. 2019), Scipy (Virtanen
et al. 2020), Scikit-image (van der Walt et al. 2014), Scikit-learn (Pedregosa et al.
2011), Seaborn (Waskom & the seaborn development team 2020), Sunpy (Mum-
ford et al. 2018), and Tensorflow (Abadi et al. 2016). Amajor part of this thesis was
prototyped using Jupyter notebooks and then ported to python scripts, enabling a
fail-fast and log-result working mechanism.

4http://plutocode.ph.unito.it/
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Chapter 3

Solar wind and its sources

Emanating from the base of the Sun’s corona, the solar wind fills the inter-
planetary medium with a magnetized stream of charged particles whose
interaction with the Earth’s magnetosphere has space-weather conse-
quences such as geomagnetic storms. Accurately predicting the solar
wind throughmeasurements of the spatio-temporally evolving conditions
in the solar atmosphere is important, and remains an unsolved problem
in heliophysics and space-weather research. In this work, we use deep
learning to predict the solar wind speed given solar coronal EUV images
from AIA. We then demonstrate the potential of deep learning in uncover-
ing the source regions of the solar wind by using Grad-CAM. This thesis
chapter originally appeared in the literature as Solar wind prediction us-
ing deep learning (DOI: 10.1029/2020SW002478 ).

The solar wind, as we have seen earlier in §. 1.2.2, seems to arise from specific
source regions in the corona. Furthermore, these sources in the corona have as-
sociations with specific structures in the solar wind. While this science question is
inherently interesting, resolving this question to any measure also has a massive
human and economic impact due to the effects of space weather. Thus, solar wind
sources are intimately tied to understanding and forecasting space weather.

Space weather is defined by the U.S. National Space Weather Plan as the con-
ditions on the sun, in the solar wind, and within Earth’s magnetosphere, ionosphere,
and thermosphere that can influence the performance and reliability of space-borne
andground-based technological systemsand can endanger human life or health (NASA
2017). The influence of the solar wind on space weather arises due to its inter-
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action with the Earth’s magnetosphere, resulting in geomagnetic storms and au-
rorae Schwenn (2006). This interaction may further induce currents, which may
devastate electrical grid distributions, oil pipelines, railway systems, and telecom-
munication systems, to name a few (see Schrijver et al. 2014; Barlow et al. 1849;
Boteler 2001; Pulkkinen et al. 2001; Eastwood et al. 2018, for a non-exhaustive set
of references). The first step to forecasting space weather variables starts with
forecasting the driver of space weather – the solar wind.

Owens et al. (2008) reviewsolarwind prediction using empirical, physics-based,
and hybrid approaches. Typically, a physics-based model uses synoptic magne-
tograms as the bottom boundary condition. An individual synoptic magnetogram
is assembled by sampling the photospheric magnetic flux distribution near the
central meridian over the course of a solar rotation. Such magnetograms can be
used to extrapolate the surface field into the corona using potential-field source-
surface (PFSS) Altschuler & Newkirk (1969) models or magnetohydrodynamics
(MHD)models (see Riley et al. 2006, for a comparison between the two). The global
coronal magnetic field (or certain derived properties thereof) may then be used as
input for physics-based solar wind propagation models (e.g. Linker et al. 1999), or
in the case of a hybrid approach, used for estimation of the solar wind at L1 using
empirical relations.

WSA-ENLIL and MAS-ENLIL (Owens et al. 2008; Schwenn 2006) are among
the most widely used solar wind models. The models provide solar wind proper-
ties such as velocity, plasma density, magnetic field, and temperature. Jian et al.
(2015) performa comparison of the various solar windmodels through the Pearson
correlation between the model forecasts and solar wind speed observations. They
present a correlation of 0.57 on hourly prediction using the GONG-MAS Thermo-
ENLIL model, and 0.50 on the same dataset using the GONG-WSA-ENLIL model.

In §1.2.2, we presented evidence for the relation between CHs and solar wind
properties (see, for example Krieger et al. 1973; Wang & Sheeley Jr 1990). The
influence of the CH on solar wind stems primarily from the magnetic field topology
of the region. Since the dynamics of the magnetic field dominate the solar corona,
the topology has a direct correspondence with the observed intensity structures in
the corona. This was exploited by Rotter et al. (2012); Rotter et al. (2015); Temmer,
Manuela et al. (2018), who checked for correlations between fractional CH area
extracted from EUV imagery data and solar wind speed. These authors obtained
correlations from≈ 0.60 to≈ 0.78 for hourly solar wind speed. More recently, Yang
et al. (2018) devised aNeural network-based prediction scheme, takingPFSSmodel
output among other parameters as input, and obtained a correlation of 0.74 on
hourly solar wind speed data.
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In ML and statistical-learning parlance, the aforementioned traditional empiri-
cal models use so-called hand-engineered features as input for their models (e.g.,
CH area or CH expansion factor). These hand-engineered features are often in-
spired by some insights from physics-based models or simply from correlations
reported in the literature. In the context of validated hypotheses, as we discuss
early on in Ch.2, these correspond to specific hypotheses derived from validated
first principles. As we have seen in §.2.2, DL is an umbrella term for a broad class
of techniques that use neural networks with multiple hidden layers for perform-
ing supervised or unsupervised learning tasks. Due to the increased availability of
data and, perhaps more importantly, inexpensive computation, DL has been widely
applied in many domains. In areas of engineering and science dealing with am-
biguous features, DL has been found to outperform ML algorithms that use hand-
engineered features Goodfellow et al. (2016). This is because the hypotheses we
present on explaining the data are lacking, and the machines learn additional in-
formation, updating their hypothesis due to their optimization procedure. We have
also seen that DL algorithms try to discover underlying relations in the data by it-
eratively updating the model parameters and, thus, the hypothesis explaining the
data.

The hypotheses or models we keep mentioning are the neural networks ap-
propriate for a given task. Two of the most prominent architectures used in deep
learning are Convolutional Neural Networks (ConvNets) and Recurrent Neural Net-
works (RNNs). ConvNets work by detecting local patterns at multiple scales in
the input and mapping them to the appropriate class (classification) or continuous
output (regression). They have been successfully applied to different classifica-
tion and regression problems Ciresan et al. (2011b); Deng & Yu (2014); LeCun et al.
(2015) for image data. RNNs, on the other hand, are a class of deep neural nets
designed for understanding the structure of data with a sequential ordering. These
have been used extensively for text prediction, natural language processing, and
regression Hochreiter & Schmidhuber (1997); Sutskever et al. (2014).

In this work, we seek to develop a DL model to forecast solar wind proper-
ties. Specifically, we use EUV images in 193 Å and 211 Å from AIA as input and
forecast the solar wind speed from the NASA OMNIWEB dataset. We use a Con-
vNet Szegedy et al. (2015) pre-trained on the ImageNet database Deng et al. (2009)
and couple it with a trainable Long-Short TermMemory cell (LSTM) implementation
of an RNN Hochreiter & Schmidhuber (1997) to perform this translation. The net-
work is not given any prior information about the physical mapping between the
EUV image data and solar wind speed. We thus perform a direct regression from a
time series of AIA images to the solar wind speed. While one of the major goals of
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this work is to develop space weather forecasting models, our core science ques-
tion is to understand the contribution of the coronal sources to the solar wind ([Q1]
in §. 1.3). Thus, we then query the model which has learned the association be-
tween EUV data and solar wind speed. In other words, we ‘reverse-engineer’ the
sources given the learned association to understand which regions in the AIA im-
ages are important for a fast and slow wind forecast. This provides us with an
understanding of the possible source regions of the solar wind.

The remaining chapter is organized as follows: In §. 3.1, we describe the data
preprocessing, partitioning into training and testing sets, and then define some con-
trol parameters and evaluation metrics. Then, in §. 3.2, we briefly introduce the var-
ious algorithms used as benchmarks. We detail our proposed model WindNet and
the visualization technique used for generating the activation map. The segmen-
tation algorithms used for the generation of binary masks for the computation of
mean activation values are also described. In §. 3.3, we summarize our model pre-
dictions vis-a-vis our benchmarks, present the trends of mean activation, and draw
conclusions in §. 3.4.

3.1 Data and Metrics

3.1.1 EUV dataset

Figure 3.1: Representative AIA data in the 193 Å and 211 Å passband with CHs and
ARs marked. This is the final data used in our analysis.
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We use the data from AIA onboard SDO to represent the conditions in the solar
corona. Specifically, we use the SDOML dataset made publicly available by Galvez
et al. (2019)1. In this dataset, the AIA images have been resampled onto a grid of
512x512 pixels with 4.8 arcsec pixel spacing and are available at a 6 min cadence.
SDOML images are stored as binary arrays in the Python numpy format Walt et al.
(2011). Our training and testing data include AIA images each day at 00 : 00 UTC.
The selected image forms a proxy for the whole day of observation. However, if the
image at 00 : 00 does not exist (as is the case with many days), the closest image
to 00 : 00 from that day is taken as a proxy for that day.

Even during non-flaring times, solar EUV images can have a dynamic range that
greatly exceeds the 8-bits per passband dynamic range typical of most computer-
vision datasets. For this reason, the input AIA images are first preprocessed by
performing log-scaling to bring out fainter features. The images are then passed
through a threshold and saturation, which limits the dynamic range of pixel values.
This was done to limit the prediction to contribution from Solar disc alone. Further-
more, we saw that the model performance was better with thresholded and satu-
rated images – thus, the dynamic range was limited. A general sweep of threshold
and saturation was performed for a particular combination of History and delay
(3.1.4) for the 193 Å data. The correlation of predicted solar wind speed with ob-
served solar wind speed 0.48±0.03 for the best set, with higher thresholds (log(250),
log(10000)) giving us 0.46 ± 0.02 and lower thresholds (log(100), log(1000)) giving
us 0.35 ± 0.02. A coarse search was performed to find the threshold values. The
thresholds for 193 Å data were scaled to 211 Å through a ratio of maximum intensi-
ties on a given day selected randomly. Eq (3.1) and (3.2) specify the threshold and
saturation operations for log scaled 193 Å and 211 Å passband images, respec-
tively. AIA 193 Å and 211 Å data, with CHs and ARs, marked after preprocessing,
are shown in Fig. 3.1.

x(193) =


log(125.0) if x ≤ log(125.0)
log(5000.0) if x ≥ log(5000.0)
x else

(3.1)

x(211) =


log(25.0) if x ≤ log(25.0)
log(2500.0) if x ≥ log(2500.0)
x else

(3.2)

The pixel values are then rescaled between 0.0 and 255.0.This is done since our

1https://purl.stanford.edu/jc488jb7715 and links therein
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feature extractor expects inputs within this range of values.

3.1.2 Solar wind dataset

The target output of the prediction models is daily-averaged solar wind speedmea-
sured at L1. We use daily averages since the variation of wind speed over a day
is not large, and the variation across the mean value sets the uncertainty in wind
speed value. The variation (or the standard deviation σ) is calculated as the vari-
ance in hourly measurements over the day, at the OMNIWEB archive2.

A representative variation in solar wind speed data over 10 days is plotted in
Fig. 3.2. The distribution of solar wind speed and the corresponding σ for the entire
dataset is shown in Fig. 3.3.
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Figure 3.2: 10 days of solar wind speed from NASA OMNIWEB dataset.

There are gaps in the AIA EUV data (30 days of missing data in 211 Å and 31 days
ofmissing data in 193 Å) for 00:00 UTC, owing to various reasons ranging from cal-
ibration maneuvers to recoveries from instrument anomalies. Thus, the solar wind
speed during these gaps has been removed to form sets of {image, wind speed}.

2available online at https://omniweb.gsfc.nasa.gov/form/dx1.html
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Figure 3.3: Left: Distribution of solar wind speed. Right: Distribution of the associ-
ated σ. The distributions are computed over the entire dataset.

3.1.3 Dataset partitioning and Cross Validation

Data are available from 1 January 2011 to 9 December 2018. Given the presence
of a background solar cycle and events in the Sun, which might systematically bias
ourmodel to perform only for a particular phase of the cycle, the whole dataset was
partitioned into batches comprising 20 contiguous days of data. If during batch for-
mation, there exists a single discontinuity in the batch, the data from the day prior to
discontinuity to 20 days prior is sampled, and placed in the same place as the pre-
vious batch, thereby removing any data leak. If there exist multiple discontinuities
(there are only 2 instances of such an event in either of the datasets), that particular
window between the discontinuities is discarded. This results in 157 batches for
211 Å and 158 batches for 193 Å data (courtesy of the one missing data, which re-
sulted in a new batch). These batches were randomly sorted into 5 folds with equal
probability, and these 5 folds were used to perform cross-validation. The dataset
partitioning scheme is shown in Fig. 3.4.

In cross-validation, if there are [1, N] folds of data, a cross-validation set is
constructed by holding the fold i as the test set and the remaining in the training set.
Such a construction is done for all folds of the batches. Our models are evaluated
against this cross-validation dataset, thereby providing us with a mean value of the
metric and a standard deviation. Henceforth, any standard deviation associated
with the predictions is to be taken as evaluated on the cross-validation dataset.

The image data are centered using the mean pixel value of the training dataset
per cross-validation fold. The images are resized to 224 × 224 pixels using Lin-
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ear Interpolation with OpenCV default values (Bradski 2000), and each image is
replicated into 3 RGB channels. This was performed as our pre-trained network
demands the input images to be of dimensions 224 × 224 × 3 since terrestrial im-
ages generally have Red, Green, and Blue as the color basis. These images are
then finally used for training our network. The solar wind speed data are scaled
between 0 and 1 using the training data statistics (max and min values) of each
cross-validation fold.
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Figure 3.4: Training and test split for cross-validation. First, the data are split into
batches of 20 days each, and each batch is randomly assigned to one of the cross-
validation folds. Then, for one particular model (i.e., for one particular combination
of history and delay), one of the folds is marked as the test set and the remaining
as training sets. A circular permutation is performed till each fold is used as a test
set. In our case, at the end of a training exercise, we will have 5 different variants
of the particular model, from which we derive the mean and standard deviation of
fitting metrics.

3.1.4 Control Hyperparameters

Hyperparameters are free parameters that give a handle in controlling the whole
algorithm. We define two control hyperparameters: history (H) - number of days of
input data required for one prediction, and delay (D) - the time from the latest input
datapoint to the day of solar wind prediction. For example, if the day of prediction
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is T , and data from T -3 to T -6 are used as input, our history is defined as 4 and the
delay as 3. We have trained models with different combinations of delay (D =1 to
4) and history (H =1 to 4), resulting in 16 variants of the WindNet model. These
two control hyperparameters are illustrated in Fig. 3.5.

Time stamp of prediction 

T-8 T-7 T-6 T-5 T-4 T-3 T-2 T-1 T

Delay = 3History = 4

Figure 3.5: Each variant of the WindNet model is trained to predict the solar wind
speed on the day T , using input data (SDO/AIA) from days in the range [T -H-D+1,T -
D], where H and D denote the history and delay control hyperparameters, respec-
tively.

3.1.5 Metrics for Comparison

Quantitatively, a set of metrics need to be defined to unambiguously quantify if the
fit is good or bad. We define three metrics to estimate the goodness of fit (ŷ =
Prediction, y = Observation):

1. Mean square error (χ2 value):

χ2 =
1

N

N∑
i

(ŷi − yi)
2, (3.3)

where N is the no. of data points. However, we present the Root Mean Square
Error (RMSE), defined as

√
χ2, in the units of km/s.

2. Reduced mean square error (χ2
red):

χ2
red =

1

N

N∑
i

(ŷi − yi)
2

σ2
i

, (3.4)
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where σi denotes the standard deviation associated with each observation yi.
The standard deviation is computed over OMNI measurements for each day
and reported in the dataset.

3. Pearson correlation coefficient (r): The standard definition of correlation is

r =

∑N
i (yi − ȳ)(ŷi − ˆ̄y)

σyσŷ

, (3.5)

where ȳ and ˆ̄y represent the mean values and σy , σŷ represent the standard
deviation of the dataset in consideration. To perform an average of correla-
tion across all folds, we transform the data to Fischer’s z-space, perform the
averaging, and then transform back – to prevent bias while performing aver-
age Corey et al. (1998). The standard deviations are calculated in Fischer’s
z-space and propagated back to correlation.

The three metrics defined have their own advantages and drawbacks.

1. The predicted data are scaled between 0 and 1. Hence, even a large deviation,
when squared, seems very small if both the prediction and observation are <

1. Thus, while χ2 is a good minimizing function for training, it fails to perform
well as a metric for a good fit.

2. To counter the above case, the χ2
red metric is used. This takes into account

the inherent error in each measurement and scales the fit accordingly. A bad
fit for a high error datapoint is acceptable, as the observation itself has high
uncertainty, while a bad prediction on a low error datapoint is bad since it
serves as a much better point of comparison.

3. If the output were a naive mean value of the batch, the χ2 and χ2
red would still

be reasonable – however, there would be no variance in the fit. Hence, the
Pearson correlation r is used to understand the trend captured by the fitted
curve. The exact fit values may not match, but if the trend is captured, the
model is fairly good according to this metric.

To summarize, Pearson r captures the trend but ignores any scaling error. χ2

captures scaling errors but doesn’t perform well on scaled data < 1. And χ2
red cap-

tures the errors by weighing them vis-a-vis the variance of observed data. These
three metrics are used for comparing the models - i.e., the r value of our proposed
model should be higher, and the χ2 and χ2

red lesser than the benchmark models.
Please note that errors (or spread) reported (for both the metrics and activation
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evaluation) later on correspond to Standard Error (or uncertainty in the estimated
mean), defined as

S(x) :=
σ(x)√
N(x)

,

where σ(x) is the standard deviation derived from the sample, andN(x) is the num-
ber of samples in the set.

Model performance, while accounting for timing errors, is an important marker
for capturing the response to dynamic events in the solar wind. Thus, we also com-
pare the performance of our models through their ability to capture High-Speed
Enhancements (HSE), as used in several texts (Owens et al. 2005; Reiss et al. 2016;
Bu et al. 2019). We use the method as outlined in Jian et al. (2015) for finding out
HSE. This is performed as:

1. Mark all time points which are more than 50 km/s faster than 1 day earlier.

2. Group each contiguous block of marked points as a distinct high-speed en-
hancement (HSE) and find the start and end time of each HSE.

3. For each HSE, find the minimum speed starting 2 days ahead of the HSE till
the start of the HSE, and mark it as the minimum speed (Vmin) of the HSE;
find the maximum speed starting from the beginning of the HSE through 1
day after the HSE and mark it as the maximum speed (Vmax) of the HSE.

4. For each HSE, find the last time reaching Vmin and the first time reaching
Vmax andmark them as the start and end time of a Stream Interaction Region
(SIR).

5. For the regrouped SIRs, find the Vmin andVmax for each SIR andmark the last
time of the highest speed gradient as the stream interface (SI), the boundary
between slow and fast wind. Eliminate SIRs with redundant SI time.

6. Reject any SIRs with Vmin faster than 500 km/s, or Vmax slower than 400 km,
or speed increase less than 100 km/s.

Each HSE present in the observation, and captured by the model is called a True
Positive (TP), and those not captured by the model are called False Negative (FN).
Spurious HSE predictions by the model are called False Positives (FP). With these,
we define the metric of comparison Threat Score (TS) as:

TS =
TP

TP + FN + FP
. (3.6)
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The threat score is a proxy for the accuracy of the forecast of any model. A model
which predicts all the HSE perfectly (while not predicting any spurious HSE) has a
TS of 1 – thus, the lower the TS, the worse the model. For every cross-validation
set per model, we identify the HSEs and calculate the TS – thereby giving us a
mean TS and its uncertainty per model. Note that if the HSE (i.e the peak of the
enhancement) occurs very near the boundary, it would be missed by the algorithm
due to our data partitioning scheme. Such HSE are discarded by benchmarking the
H=1, D=1 Persistence model to give a TS = 1.0.

This study does not account for the effect of ICMEs (Near-Earth Interplane-
tary Coronal Mass Ejections). There are 170 ICMEs reported within the time range
considered in this study, affecting solar wind measurements in 336 days. In both
model training and evaluation, we did not remove days for which there were ICMEs.
The prediction of solar eruptions leading to CMEs and ICMEs is outside the scope
of this study. Nevertheless, their occurrence impacts the solar windmeasurements
at L1. So for the evaluation of the solar wind models in this paper, we decided to
include even the days when ICMEs were present.

3.2 Modelling and methods

3.2.1 Benchmark Models

We next describe various models taken as benchmarks for our proposed WindNet
model. These benchmarkmodels all operate as autoregressivemodels on the solar
wind data only and do not use AIA images as input. The models (except 27-day
persistence) are all corrected for the data gaps, thereby making the comparison
reasonable.

• Naive mean value model.

• N day and 27-day Persistence model.

• Autoregression with XGBoost (Chen & Guestrin 2016).

• Autoregression with Support Vector Machines (SVMs).
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Autoregression using a ‘Mean value’

One of the most basic benchmarks for any model is the comparison of the fit with
a mean value model. This benchmark takes in the solar wind data and outputs the
mean value of the whole batch. This model serves as the lowest benchmark that
the proposed model should surpass since untrained models output mean values.

Persistence Model

The second benchmark model is persistence. The solar wind speed is fed in as
input, and the same output is obtained. Such a model would show how long the
data persists through time.

The N-day persistence is calculated from H + D − 1 days prior to prediction,
to the day of prediction. As such, there is no individual dependence of the persis-
tence model onH orD – rather, the dependence is on the combined value, thereby
having degeneracy. This model is primarily used for determining how far into the
future our models consistently give a good prediction, given an observation today,
or observations starting today.

We also benchmark our results against 27-day persistence for 1 Carrington
rotation, as it has been shown to be a goodbenchmarkmodel inOwens et al. (2013).
The 27-day persistencemodel operated on the complete solar wind dataset (devoid
of any gaps).

Autoregression using XGBoost

The solar wind speed is autoregressed for different H and D using the XGboost
algorithm Chen & Guestrin (2016). That is, the prediction ŷT+1 is given as ŷT+1 =

f(x), where model input is x = (yT−H−D+1, yT−H−D, ..., yT−D), and the function f()

comprises the gradient-boosted decision trees. The various parameters set for the
algorithmare shown in Table. 3.1. The bestmodel from the swept set of parameters
is selected based on the lowest χ2 value.

Autoregression using support vector machines (SVMs)

SVM is also used as a benchmark for a good fit since it has more non-linearity than
decision trees due to the presence of kernels. Three kernels are used for bench-
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Table 3.1:: XGBoost parameter selection using grid search.

Parameter Value
eta [0.001,0.01,0.1,0.8,0.9,1.0]
seed 0
objective reg:linear
max_depth 200
lambda [50,10,5,1,0.5,0.05]

marking - Radial Basis function, Linear, and Polynomial kernel of degree 5. We use
the Scikit-learn Pedregosa et al. (2011) implementation of SVM in this work. The
parameters were selected by grid search using the χ2 value as the comparisonmet-
ric. The best fitting parameters are shown in Table. 3.2.

Table 3.2:: Support-vector regression-parameter selection.

Kernel Parameter Value
RBF C 1e+4
RBF gamma 0.001
Linear C 1e+4
Polynomial C 1e+4
Polynomial degree 5

3.2.2 Proposed solar wind model

In this work, we have a time series of images that must be translated to wind speed
measurements. To this end, we first reduce the dimensionality of the AIA images
into a set of generic features. Then, we feed this representation of the image as
a time series to a regressor, which regresses against the solar wind speed. We
propose the DL modelWindNet, constructed using a ConvNet and an RNN. We use
a pretrained GoogLeNet (Szegedy et al. 2015)model as a ConvNet feature extractor
and then feed the obtained embeddings into a variant of an RNN, called Long-Short
Term Memory (LSTM; Hochreiter & Schmidhuber 1997) model3.

GoogLeNet is aConvNet (Szegedy et al. 2015) developed for the ImageNet (Deng
et al. 2009) competition. This competition provides a huge database of labeled im-
ages with the objective of classifying them into different categories. As mentioned

3GoogLeNet weights were obtained from: http://www.deeplearningmodel.net/)
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Figure 3.6: WindNet architecture using GoogLeNet and an LSTM.

earlier, ConvNets work by detecting patterns at multiple scales in the input. The
size of the convolution kernel gives this scale over which patterns are detected.
ConvNets generally have convolutions performed sequentially – thus, at a given
layer, the sensitivity is only to a particular scale. However, GoogLeNet, for the first
time, introduces us to the concept of the Inception module (Szegedy et al. 2015).
Essentially, this module has, at each layer, convolutions using different kernel sizes
in parallel. Thus, it provides sensitivity atmultiple scales at the same time. This has
been shown to outperform other models on the ImageNet14 dataset Szegedy et al.
(2015).

GoogLeNet has been trained on everyday objects. However, given the large vol-
ume of training data in ImageNet14, the initial layers of the network capture generic
global features in the images Goodfellow et al. (2016). Thus, the first couple of lay-
ers essentially generates a generic, non-linear global transformation of the input
images – like edge detection, curve detection, high- and low-pass filtering, etc. As
one goes deeper, the network captures features specific to the dataset – which is
not relevant to our dataset. Thus, we use this pretrained network to generate a low-
dimensional representation of the AIA data in the form of embeddings. This tech-
nique is known in the literature as Transfer learning Yosinski et al. (2014). We adopt
a ‘multi-resolution approach’ to generate the embeddings – i.e., responses from lay-
ers at different depths are taken, normalized, and concatenated. The embeddings
are then fed to an LSTM for regression against the solar wind speed. GoogLeNet
has its weights fixed, while the LSTM (and a fully connected layer at the end) are
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trained. We use a single LSTM cell in our work. The model is developed using the
Tensorflow package for Python Abadi et al. (2015), and is summarized in Fig. 3.6.

The training details for the algorithm are summarized in Table. 3.3.

Table 3.3:: WindNet parameter selection

Parameter Value
Cost function χ2(ŷ,y)+χ2

red(ŷ,y)
Optimizer Adam
Learning rate 5e-4
Dropout for LSTM 0.5
L2 Norm coefficient 1e-6
No. of hidden units in one LSTM cell 400
No. of iterations 300
Feature length from GoogleNet 832

3.2.3 Activation Visualization

There exist techniques in the DL literature to visualize neurons in hidden layers
which are preferentially activated for a given input - this activation can be extrap-
olated back to the given input to understand which regions of the input data have
a large impact on the prediction. These methods rely primarily on the gradient of
output w.r.t each input pixel, thereby providing an approximation of regions most
responsible for an increase or decrease in the output. Themethods, while not being
perfect visualizers, are a window into the workings of the network. In this work, we
use Grad-CAM (Selvaraju et al. 2017) maps as a visualization technique.

Grad-CAM, or Gradient Class Activation Maps, are maps generated by point-
wise multiplication of the average gradient per channel of output vis-a-vis a given
convolution layer with the corresponding ConvNet layer activation. The obtained
map is then passed through aRectified Linear Unit (ReLU, namely f(x) = max([0, x]))
activation function to obtain the activation map. The maps are averaged across
channels and then scaled up to the dimensions of the input image for comparison.
This method produces activation maps of the model on the input data. These ac-
tivation maps are subsequently used to generate a metric for the determination of
the influence of the CHs and ARs.
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3.2.4 Generating binary masks

A simple metric for understanding the influence of a particular set of features for
a regression problem would be to look at the mean value of the activation on that
particular set of features across all data points and look for the variation of this
mean value over days leading to prediction. Therefore it is of great importance to
segment out the CHs and the ARs to generate binary maps.

2016-01-26 00:00:00

AIA 193Å image segmentation

2016-01-26 00:00:00

AIA 211Å image segmentation

Figure 3.7: A representative visualization of the segmentation map of 193 Å pass-
band (left) and 211 Å passband (right) using classical computer vision algorithms.
The overplotted green contours enclose AR, and the red contours CH. The segmen-
tation maps are created separately for the AR and CH.

To obtain the CH segmentation map, we use Otsu thresholding (Otsu 1979).
This thresholding assumes the presence of two distinct classes of pixel intensities,
essentially Gaussian, and tries to find an intensity value that would maximize the
inter-class variance (or alternatively, minimize the intra-class variance). We use
stacked thresholding – i.e, a preliminary threshold to segment out the approximate
region of the coronal holes first, and then another threshold to segment out the
coronal holes from this subset of the image.

The AR segmentation is far more non-trivial. Otsu thresholding picks out spu-
rious areas as ‘active regions’. Hence, we apply a 5-class Gaussian Mixture Model
(Pedregosa et al. 2011) on the pixel intensities to segment out the ARs. The Gaus-
sian with the highest mean is found to segment out the ARs well. A representative
set of segmentation maps overplotted on the EUV data is shown in Fig. 3.7.
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With these binary maps, we simply perform a pointwise multiplication of our
activation values on a given image with its CH and AR map, respectively, while also
scaling by the total area of segmentation. The scaling by area of CH and AR is done
to remove dependence on the absolute size of these regions and obtain a normal-
ized quantity. We then take the mean value over the image and across all datasets
to obtain a single scalar to quantify the activation at ARs and CHs, across the days
of history for both fast and slow solar wind. The activation plots are constructed
for the training set (for better statistics) since the generalizability of the model is
captured in its performance on the test set (or the cross-validation set).

3.3 Results

3.3.1 Model benchmarking

Table 3.4:: Correlation comparison of our model predictions with the Benchmark
models. 27-day persistence gives a correlation of 0.456±0.02. Models which do
not have a correlation value are given ‘–’. The p-values are all less than 10−7 for
WindNet variants and less than 10−2 for the benchmark models.

(H,D) WindNet 193 WindNet 211 XGBoost Persistence SVM Linear SVM RBF SVM Polynomial Naive mean
(1,1) 0.28 ± 0.03 0.34 ± 0.02 0.73 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.56 ± 0.01 –
(1,2) 0.37 ± 0.03 0.42 ± 0.03 0.36 ± 0.02 0.43 ± 0.02 0.43 ± 0.02 0.43 ± 0.02 0.34 ± 0.01 –
(1,3) 0.47 ± 0.01 0.48 ± 0.02 0.12 ± 0.02 0.19 ± 0.02 0.19 ± 0.03 0.19 ± 0.02 0.18 ± 0.03 –
(1,4) 0.46 ± 0.03 0.52 ± 0.04 0.02 ± 0.03 0.07 ± 0.03 0.08 ± 0.03 0.07 ± 0.03 0.07 ± 0.03 –
(2,1) 0.37 ± 0.05 0.42 ± 0.02 0.76 ± 0.01 0.43 ± 0.02 0.79 ± 0.01 0.79 ± 0.01 0.56 ± 0.01 –
(2,2) 0.47 ± 0.02 0.39 ± 0.06 0.40 ± 0.02 0.19 ± 0.02 0.47 ± 0.02 0.47 ± 0.02 0.34 ± 0.02 –
(2,3) 0.46 ± 0.03 0.53 ± 0.03 0.16 ± 0.02 0.07 ± 0.03 0.22 ± 0.02 0.21 ± 0.02 0.18 ± 0.03 –
(2,4) 0.51 ± 0.03 0.48 ± 0.03 0.01 ± 0.03 0.03 ± 0.03 0.08 ± 0.03 0.08 ± 0.03 0.05 ± 0.03 –
(3,1) 0.41 ± 0.04 0.51 ± 0.03 0.76 ± 0.01 0.19 ± 0.02 0.79 ± 0.01 0.79 ± 0.01 0.57 ± 0.01 –
(3,2) 0.46 ± 0.03 0.47 ± 0.02 0.39 ± 0.02 0.07 ± 0.03 0.47 ± 0.02 0.47 ± 0.02 0.34 ± 0.01 –
(3,3) 0.47 ± 0.03 0.53 ± 0.03 0.15 ± 0.02 0.03 ± 0.03 0.22 ± 0.02 0.22 ± 0.02 0.16 ± 0.02 –
(3,4) 0.46 ± 0.03 0.54 ± 0.03 0.03 ± 0.04 0.01 ± 0.03 0.08 ± 0.03 0.09 ± 0.03 0.05 ± 0.03 –
(4,1) 0.47 ± 0.04 0.54 ± 0.03 0.75 ± 0.01 0.07 ± 0.03 0.79 ± 0.01 0.79 ± 0.01 0.57 ± 0.01 –
(4,2) 0.48 ± 0.03 0.52 ± 0.02 0.38 ± 0.01 0.03 ± 0.03 0.47 ± 0.02 0.47 ± 0.02 0.34 ± 0.01 –
(4,3) 0.45 ± 0.04 0.55 ± 0.03 0.16 ± 0.02 0.01 ± 0.03 0.22 ± 0.02 0.22 ± 0.01 0.15 ± 0.03 –
(4,4) 0.48 ± 0.04 0.50 ± 0.03 0.04 ± 0.04 -0.02 ± 0.03 0.09 ± 0.03 0.09 ± 0.03 0.06 ± 0.04 –

From Table. 3.4 through Table. 3.7, we have summarized the performance of
WindNet, as well as the benchmark autoregressive models for the metrics defined
– Correlation (r), RMSE, χ2

red and TS respectively. We see that WindNet outperforms
the benchmarks over combinations where the delay is generally more than 1 - i.e,
where the autoregressivemodels do not have the immediately preceding solar wind
speed available. In fact, for larger delays and histories, WindNet shows consistent
performance, while other models fail to perform a reasonable prediction. The best
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Table 3.5:: RMSEcomparison of ourmodel predictionswith theBenchmarkmodels.
27-day persistence gives an RMSE of 93.14±4.43.

(H,D) WindNet 193 WindNet 211 XGBoost Persistence SVM Linear SVM RBF SVM Polynomial Naive mean
(1,1) 97.01 ± 4.02 96.64 ± 4.27 60.31 ± 0.62 62.02 ± 1.05 57.68 ± 0.72 57.68 ± 0.73 74.17 ± 1.32 88.05 ± 2.08
(1,2) 92.13 ± 2.88 89.45 ± 2.68 83.47 ± 1.00 95.35 ± 1.60 80.60 ± 1.28 80.55 ± 1.28 83.74 ± 1.75 87.77 ± 2.20
(1,3) 83.70 ± 1.77 87.34 ± 3.85 90.33 ± 1.30 113.81 ± 2.39 87.77 ± 1.74 87.78 ± 1.75 87.97 ± 1.91 88.04 ± 2.42
(1,4) 84.33 ± 2.31 85.94 ± 4.67 92.14 ± 1.73 122.20 ± 3.13 89.06 ± 1.98 89.07 ± 1.97 88.91 ± 1.94 88.29 ± 2.46
(2,1) 96.31 ± 4.87 91.12 ± 2.30 57.87 ± 0.65 95.35 ± 1.60 54.27 ± 0.93 54.19 ± 0.92 74.64 ± 1.80 87.77 ± 2.20
(2,2) 90.80 ± 2.85 102.85 ± 9.00 83.48 ± 0.83 113.81 ± 2.39 78.94 ± 1.58 78.98 ± 1.57 84.36 ± 1.90 88.04 ± 2.42
(2,3) 86.21 ± 2.12 83.38 ± 2.78 91.86 ± 1.19 122.20 ± 3.13 87.09 ± 1.73 87.17 ± 1.70 87.91 ± 1.85 88.29 ± 2.46
(2,4) 86.24 ± 2.63 86.53 ± 2.27 93.11 ± 1.14 125.16 ± 3.12 88.68 ± 1.95 88.72 ± 1.97 88.77 ± 1.88 88.86 ± 2.46
(3,1) 93.35 ± 4.33 82.60 ± 1.75 57.80 ± 0.80 113.81 ± 2.39 54.40 ± 1.01 54.34 ± 1.00 73.84 ± 1.70 88.04 ± 2.42
(3,2) 88.17 ± 1.81 85.46 ± 2.63 84.10 ± 0.86 122.20 ± 3.13 78.59 ± 1.67 78.55 ± 1.63 83.91 ± 1.85 88.29 ± 2.46
(3,3) 87.04 ± 1.25 83.97 ± 3.04 91.58 ± 1.05 125.16 ± 3.12 86.68 ± 1.76 86.75 ± 1.73 87.91 ± 1.79 88.86 ± 2.46
(3,4) 87.21 ± 2.17 81.21 ± 1.86 92.72 ± 1.28 126.79 ± 2.92 88.72 ± 1.75 88.62 ± 1.80 88.96 ± 1.67 89.14 ± 2.41
(4,1) 84.19 ± 2.83 80.27 ± 2.07 59.14 ± 0.82 122.20 ± 3.13 54.52 ± 1.03 54.48 ± 1.04 74.28 ± 2.07 88.29 ± 2.46
(4,2) 86.42 ± 1.98 83.06 ± 2.51 83.78 ± 0.74 125.16 ± 3.12 78.47 ± 1.81 78.45 ± 1.78 84.16 ± 1.88 88.86 ± 2.46
(4,3) 88.32 ± 1.93 80.28 ± 3.05 91.00 ± 1.25 126.79 ± 2.92 86.81 ± 1.59 86.82 ± 1.63 88.25 ± 1.68 89.14 ± 2.41
(4,4) 82.93 ± 1.72 85.34 ± 3.10 92.34 ± 1.34 128.23 ± 2.96 88.87 ± 1.46 88.78 ± 1.58 89.41 ± 1.40 89.43 ± 2.29

Table 3.6:: χ2
red comparison of our model predictions with the Benchmark models.

27-day persistence gives a χ2
red of 51.69±9.14.

(H,D) WindNet 193 WindNet 211 XGBoost Persistence SVM Linear SVM RBF SVM Polynomial Naive mean
(1,1) 33.38 ± 4.10 29.63 ± 1.36 23.18 ± 0.82 24.50 ± 0.73 21.20 ± 0.77 21.20 ± 0.77 35.17 ± 1.91 41.98 ± 3.71
(1,2) 28.43 ± 1.98 30.80 ± 2.05 44.10 ± 1.75 57.63 ± 1.76 41.13 ± 1.77 41.09 ± 1.79 44.54 ± 2.65 39.16 ± 3.92
(1,3) 25.82 ± 1.39 26.27 ± 1.97 51.67 ± 2.08 81.61 ± 2.74 48.79 ± 2.17 48.80 ± 2.20 49.09 ± 2.57 40.34 ± 3.25
(1,4) 26.83 ± 2.31 26.01 ± 2.47 54.21 ± 2.55 95.19 ± 4.25 50.63 ± 2.40 50.64 ± 2.39 50.48 ± 2.48 44.99 ± 3.65
(2,1) 48.07 ± 11.96 43.75 ± 7.58 21.17 ± 0.67 57.63 ± 1.76 18.63 ± 0.77 18.59 ± 0.77 35.44 ± 2.38 39.16 ± 3.92
(2,2) 47.32 ± 8.43 90.87 ± 38.04 44.05 ± 1.05 81.61 ± 2.74 39.41 ± 1.49 39.45 ± 1.50 45.15 ± 2.44 40.34 ± 3.25
(2,3) 30.09 ± 3.42 31.60 ± 3.84 53.88 ± 2.23 95.19 ± 4.25 48.38 ± 2.00 48.46 ± 1.99 49.37 ± 2.45 44.99 ± 3.65
(2,4) 31.41 ± 3.97 37.90 ± 4.07 54.86 ± 1.92 99.64 ± 5.18 49.71 ± 1.90 49.76 ± 1.91 49.83 ± 1.96 49.46 ± 3.69
(3,1) 47.56 ± 6.01 29.16 ± 2.87 21.13 ± 0.65 81.61 ± 2.74 18.71 ± 0.63 18.67 ± 0.62 34.60 ± 1.90 40.34 ± 3.25
(3,2) 33.51 ± 3.20 36.66 ± 3.87 45.06 ± 1.14 95.19 ± 4.25 39.34 ± 1.41 39.31 ± 1.41 44.97 ± 2.29 44.99 ± 3.65
(3,3) 43.29 ± 4.10 37.54 ± 7.33 53.09 ± 1.86 99.64 ± 5.18 47.47 ± 1.55 47.56 ± 1.57 48.89 ± 1.92 49.46 ± 3.69
(3,4) 42.35 ± 5.76 31.52 ± 5.16 53.40 ± 2.06 101.18 ± 5.53 48.83 ± 1.79 48.73 ± 1.85 49.12 ± 1.90 50.96 ± 5.72
(4,1) 31.16 ± 1.76 31.18 ± 3.36 22.25 ± 0.40 95.19 ± 4.25 18.92 ± 0.54 18.89 ± 0.54 35.33 ± 2.23 44.99 ± 3.65
(4,2) 27.99 ± 3.35 29.59 ± 3.94 44.34 ± 0.80 99.64 ± 5.18 38.87 ± 1.24 38.86 ± 1.25 44.81 ± 1.93 49.46 ± 3.69
(4,3) 36.98 ± 3.82 26.83 ± 2.20 51.47 ± 2.06 101.18 ± 5.53 46.73 ± 1.53 46.76 ± 1.62 48.36 ± 2.02 50.96 ± 5.72
(4,4) 31.90 ± 3.38 32.58 ± 4.83 52.66 ± 2.21 103.16 ± 5.66 48.70 ± 1.81 48.62 ± 1.94 49.35 ± 2.06 52.29 ± 4.11

performance of WindNet is for a history-delay combination of (4, 3), wherein the
correlation is≈ 0.55, and the spread is 0.03 – this is for 211 Å. Similarly, the best fit
using 193 Å data occurs for a combination of (2, 4), with a correlation of 0.51 and
a spread of 0.03.

The Naivemeanmodel has no variance, so there would be no correlation asso-
ciated with it – however, it is presented for the sake of completeness. Autoregres-
sive SVM using an RBF kernel seems to perform better given the solar wind speed
closer to the day of prediction but falters as more delay is induced. The linear SVM
performs as well as the non-linear RBF kernel, but the polynomial kernel fails to get
a good fit. The 27-day persistence is a set of just 5models – thus, this performance
is stated in the caption of the respective Tables.
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Table 3.7:: HSE Threat Score comparison. The 27-day persistence model gives a
TS of 0.506± 0.029. Cases with TS 0.0 imply a value less than 1e− 3.

(H,D) WindNet 193 WindNet 211 XGBoost Persistence SVM Linear SVM RBF SVM Polynomial Naive mean
(1,1) 0.081±0.023 0.112±0.040 0.776±0.037 1.000±0.000 0.748±0.038 0.748±0.038 0.263±0.026 0.0
(1,2) 0.042±0.022 0.150±0.042 0.329±0.012 0.858±0.037 0.288±0.027 0.271±0.028 0.162±0.035 0.0
(1,3) 0.167±0.008 0.140±0.041 0.061±0.015 0.351±0.021 0.0 0.0 0.029±0.013 0.0
(1,4) 0.212±0.042 0.206±0.047 0.036±0.018 0.199±0.024 0.0 0.0 0.0 0.0
(2,1) 0.203±0.064 0.227±0.029 0.711±0.036 0.858±0.037 0.850±0.022 0.845±0.021 0.292±0.027 0.0
(2,2) 0.293±0.022 0.297±0.040 0.423±0.096 0.351±0.021 0.461±0.017 0.449±0.017 0.148±0.033 0.0
(2,3) 0.225±0.036 0.198±0.037 0.030±0.027 0.199±0.024 0.0 0.0 0.020±0.011 0.0
(2,4) 0.239±0.045 0.282±0.044 0.043±0.038 0.215±0.022 0.0 0.0 0.0 0.0
(3,1) 0.310±0.051 0.259±0.031 0.753±0.024 0.351±0.021 0.850±0.026 0.844±0.026 0.323±0.026 0.0
(3,2) 0.237±0.048 0.292±0.029 0.472±0.107 0.199±0.024 0.426±0.018 0.408±0.024 0.113±0.029 0.0
(3,3) 0.328±0.038 0.287±0.017 0.116±0.047 0.215±0.022 0.0 0.0 0.0 0.0
(3,4) 0.357±0.031 0.294±0.026 0.024±0.022 0.236±0.026 0.0 0.0 0.0 0.0
(4,1) 0.286±0.037 0.309±0.027 0.737±0.034 0.199±0.024 0.849±0.032 0.845±0.034 0.292±0.031 0.0
(4,2) 0.298±0.040 0.200±0.039 0.428±0.083 0.215±0.022 0.431±0.024 0.428±0.025 0.157±0.037 0.0
(4,3) 0.289±0.070 0.200±0.056 0.115±0.044 0.236±0.026 0.0 0.015±0.009 0.011±0.010 0.0
(4,4) 0.251±0.049 0.314±0.080 0.035±0.022 0.307±0.033 0.0 0.0 0.007±0.006 0.0

3.3.2 WindNet prediction

In this section, we investigate the variation in prediction for our WindNet models.
The model with the highest correlation, as mentioned previously, is for a history of
4 and a delay of 3 for 211 Å. As can be seen in the Table. 3.4, there seems to be
a subtle trend of an increase in correlation with history for a given delay for short
delays. The performance ofmodels with a delay smaller than history seemsmostly
consistent within the error bars. For the 193 Å model in Table. 3.4, it can be seen
that an increase in delay for a given history results in almost a consistent prediction
correlation for high history models (again, within the errorbars – though the mean
values do not seem to follow an ordered trend), except in the case of 1-day history,
where the correlation increases. This trend of increase in delay for a given history
is largely followed in the 211 Å data, though the 4-day history seems to be the most
consistent in this case within the errors and the best performing. In general, the
expectation would be an increase in correlation with increasing history and some
form of variation due to an increase in delay. The variation in performance with
history for small delays is fairly consistent between both 193 Å and 211 Å with only
the actual correlation values being different – however, larger delay models do not
have the same variation in performance for 193 Å and 211 Å. 211 Å, in fact, seems
to be a better passband for solar wind prediction since the corresponding models
have higher correlation means and smaller standard deviations. Short-delay and
short-history models (for example, 1-day history and delay) do not perform as well
asmodels with larger history and delay (for example, 4-day history and 3-day delay)
since the solar wind is yet to arrive at L1. 193 Å data shows a peak in correlation at
2-day history and 4-day delay. The 211 Å data shows a similar peak at 4-day history
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and 3-day delay.

Figure 3.8: Wind-speed prediction plot from one of the cross-validationmodels, us-
ing 4 days of image data with 3 days of delay. On the x-axis, the ending date of each
batch is shown. Since batches are randomly assigned to each cross-validation fold,
the dates are not kept in order. The model has a correlation value of 0.61, RMSE of
76.4 km/s, and χ2

red of 19.35. The error bars are measurement errors of the wind-
speed observations. The HSE are highlighted by their start and end times – blue
for the observed wind speed and red for the predicted wind speed. The blue bars
below the plot indicate ICMEs.

A summary of RMSE is shown in Table. 3.5, and a similar summary of χ2
red is

shown in Table. 3.6. The TS is tabulated in Table. 3.7. The TS table shows that our
proposedmodel has amaximum of 0.357±0.03. The low TSmay be explained bet-
ter by a careful observation of Fig. 3.8. This is a plot of one of the cross-validation
models using 211 Å, having the highest correlation, with 4-day history and a 3-day
delay of data. With 10 TP, 2 FP, and 13 FN, the model is seen to have a TS of 0.4,
a correlation with the observation of 0.61, RMSE of 76.4 km/s, and χ2

red of 19.35.
Here, we see that there are many more HSE present in the observed wind speed,
which seems to bemissing from the prediction. However, upon careful observation,
it may be seen that many of the observed HSE do correspond to an enhancement
in the wind speed of the predictor – either at the exact time step or with a lag/lead
of 3 to 4 days. However, the predicted values do not show a drastic enhancement
more than the prescribed thresholds. Thus, these events are not marked as HSE.

The WindNet performance on the error metrics, though, largely complements
the correlation performance and shows WindNet has better performance than the
benchmark models for delays larger than 1 day in most cases.
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3.3.3 Activation visualization

We next analyze our models’ activation for various data days using Grad-CAM ac-
tivation maps (§. 3.2.4). Fig. 3.9 shows a sample Grad-CAM map from a fast and
slow wind prediction using 211 Å data and a similar map are shown from 193 Å
prediction in Fig. 3.10, for comparison. We see that the CHs are activated for the
prediction of the fast wind, and the ARs are predominantly activated for the slow
wind prediction. Note that some CH activation is also seen in the 193 Å slow wind
map. The CH peak activation for fast wind occurs 3 to 4 days prior to prediction,
which seems to corroborate with the correlations independently obtained Vršnak
et al. (2007).

The slow wind activation peaked at the AR close to the day of prediction (and
also at the earliest day prior to prediction for 211 Å data), with activation at other
regions of the Sun further away from prediction. We hypothesize this might be due
to bias of the LSTM to the most recent input to the network – but this is still a
hypothesis.

To understand the statistics of activation given to CHs and ARs, we look at
the mean activation value (as described previously) and plot it for ‘fast-wind’ and
‘slow-wind’ predictions from the model. While each cross-validation model set will
have its own activation plot, we present the plot for both 193Å and 211Å models
using 4-day history of data with 3 days of delay. We also plot the activation for the
models using 4-day history of data with 2 days of delay since it shows consistent
(and good) performance using both 193 Å and 211 Å data. These trends are shown
in Fig. 3.11 and Fig. 3.12 respectively.

It can be seen from these plots that the fast solar wind induces greater activa-
tion at the CHs closer to the day of prediction, and the activation (at CH) decreases
as we go farther into the past – however, for the 211 Åmodel, the activation shows
a slight increase. The fast wind also seems to activate the AR at much further
times – for both 193 Å and 211 Å. Note, however, that the peak CH activation is
larger than the peak AR activation for 193 Å – for 211 Å data, they are consistent
within the errors in Fig. 3.11. For the same parameters in Fig. 3.12, CH peaks at 3
days prior to prediction for both the passbands and then goes down. Interestingly,
however, the AR also seems to be activated to a similar level but much further away
from prediction time.

For the slow wind, activation for ARs remains high for much longer than the
CHs – however, the peak occurs closer to the day of prediction rather than further
away from prediction. This trend is seen in both Fig. 3.11 and Fig. 3.12.
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3.4 Discussion

Identification of solar wind source regions and the problem of solar wind prediction
can be approached in two ways. The first is through purely theoretical modeling of
the mechanism, while data is accumulated to constrain the physical parameters.
The second method is to let the data speak for itself using purely empirical model-
ing and then attempt to extract the physics.

We propose the WindNet to empirically model solar wind speed using AIA im-
agery data. We are able to predict the solar wind speed better with the 211 Å
data and obtain a correlation of 0.55 with the observed wind speed in the cross-
validation. The best-performing models using 193 Å and 211 Å outperform most
of the larger delay benchmark models and the 27-day persistence model. The χ2

red,
which accounts for uncertainty in the measurement itself, indicates that our best
models outperform the 27-day persistence and are only slightly worse off than an
autoregressive model with a single day delay – more so for lead time predictions
of 3-4 days.

We then study the possibility of uncovering the associations between coronal
sources and the solar wind speed using WindNet. To this end, we use Grad-CAM as
an ‘explainable AI’ tool to understand the activation at different spatial locations in
the EUV images, given the solar wind modality.

The Activation plots suggest that the WindNet pays attention to certain solar
features consistent with heuristic expectations from solar wind theory. We see that
CHs are deemed important 3-4 days prior to the prediction of a fast wind, while the
ARs are deemed important for a slow wind prediction with misplaced timing. The
CH-fast wind association is seen with strong significance in the 193 Å passband.
The slow wind association is seen in both the passbands, albeit with misplaced
timing. These are indicative of CHs and ARs potentially being sources of these two
different kinds of the solar wind, as also known from literature (Krieger et al. 1973;
Brooks et al. 2015). However, we must note that all we are observing and inter-
preting is one aspect of the real process occurring underneath. Thus, care must
be taken while trying to understand these observations and results in the context
of our hypothesis and models. Especially the significance of the interpretation of
activation values depends on a couple of other factors:

• Fitting error of our model: We still have a maximum correlation of 0.51(0.55)
for the 193 Å(211 Å) data. A higher correlation points to a more confident
estimation of the source region of the solar wind.
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• Visualization: The Grad-CAM used in this work gives a very coarse localiza-
tion of activation and thus may not point to the precise origin of the particular
kinds of wind.

• Segmentation: Defining a region as CH or AR accurately is difficult with inten-
sity values alone – ideally, onewould require extrapolatedmagnetic field lines
to check for these structures. Thus, an accurate definition of CHs based on
intensity is required. In this work, we attempted to automate the CH and AR
definitions using histogram analysis. Thus there is bound to be some form
of uncertainty. Hence, better segmentation methods may accurately capture
the entire activation within a CH or an AR, and give a much better estimate of
activation per unit area. Furthermore, the slowwind is known to arise from the
boundaries of ARs (as the outflow regions) – thus, there is a need to segment
out the inner core and the boundary regions of the ARs.

From a purely forecasting perspective, at first glance, WindNet may appear to
not outperform existing models in terms of the metrics used. However, comparing
our model to existing models (like the regressive models of Rotter et al. (2015), or
Wang & Sheeley Jr (1990)) would be an apples-to-oranges comparison since:

• Weperformpredictions overmultiple Carrington rotations on the 8-year dataset.

• Our prediction target is the daily averaged solar wind speed, which must be
compared to daily averaged predictions by other models.

• We perform 5-fold cross-validation on this dataset. However, due to a lack
of confidence intervals in the previous results, we are unable to check if our
results are statistically different from the existing models.

Thus, any benchmarking of our model must be done with models undergo-
ing the same data preparation procedure, the same span of data, and at the same
cadence. We thus do not compare our results with the existing aforementioned
models.

To overcome this limitation, we propose empirical benchmark models, not un-
like the existing empirical solar wind prediction models. In this regard, WindNet
shows reasonable performance vis-a-vis the benchmark models; however, numer-
ous improvements are possible.

• Data preparation: As H+D increases, more samples are discarded (as ex-
plained in §. 3.1.4). Thismay bemademore efficient by performing the Cross
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Validation (CV) first, then splitting it into folds later with the downside of high
memory consumption.

• ICME mitigation: Our random assignment of 5-fold cross-validation is to en-
sure the ICMEs are distributed uniformly across all the folds, thereby influenc-
ing all the CVs equally. Due to an inadequate number of ICME samples, we
do not characterize them.

• Network architecture: Better architectures may be designed to improve the
prediction vis-a-vis the observations, or more novel ML methods may be em-
ployed for a direct prediction.

• Visualization: Visualization of ML models is a hot area of research in the ML
community – thus, more accurate visualization techniques may be expected
to emerge in coming years.

• TS evaluation: As seen in §. 3.3, the HSE capturing algorithm misses many
potential enhancements due to the speed increases not satisfying the abso-
lute speed change criteria. Hence, the TS evaluation should be taken with
caution.

This work serves a twofold purpose. One, it is the first step toward training
and testing various ML models for predicting other solar wind target parameters,
such as proton density, temperature, and magnetic field (specifically, Bz). Two, we
have demonstrated the potential exhibited by DL to probe and uncover salient as-
sociations between different processes using techniques of explainable AI. Such
techniques serve as independent verification and validation of conventional ‘source
mapping’ techniques, which depend on global extrapolation, radial backtracking,
and abundance matching. All of these techniques can be potentially merged to-
gether in the near future to generate stronger constraints on the possible sources
of solar wind.

To this end, the code and data used in this work are open-sourced on GitHub:
https://github.com/Vishal-Upendran/WindNet. Our publicly released source code
promotes reproducible research by allowing others to reproduce the results pre-
sented here. This includes data partitioning, cross-validation, model training, and
evaluation. This code base can be built upon by other researchers to further im-
prove the performance of solar wind predictionmodels. Furthermore, with the ever-
increasing research on Interpretable AI, this codebase may be used by researchers
to come up with various methods of visualizations to quantify the source regions
of solar wind.
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Figure 3.9: GC activation maps for a slow (top) and fast wind (above) prediction
using 211 Å data, with the colourmap corresponding to each row given on the right.
The activation maps and the images have been rescaled between 0 and 1 row-
wise for ease of comparison. For the fast wind prediction, note how the maximum
activation occurs at the CH, 3 to 4 days prior to prediction, which seems to match
with the correlations obtained in the literature Vršnak et al. (2007). The slow wind,
on the other hand, activates the AR closer to the prediction, with no activation at
the CH.
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Figure 3.10: GC activation maps for a slow (top) and fast wind (above) prediction
using 193 Å data, with the colourmap corresponding to each row given on the right.
The activation maps and the images have been rescaled between 0 and 1 row-wise
for ease of comparison. For the fast wind prediction, note how the maximum acti-
vation occurs at the CH, 3 to 4 days prior to prediction, which seems to match with
the correlations obtained in the literature Vršnak et al. (2007). The slow wind, on
the other hand, activates the AR both closer and further away from prediction and
activated at the small CH on the closest day to prediction. However, other regions
of the quiet Sun show a higher activation further away from the day of prediction.
The slow wind activation is quite mixed and unclear when compared with the fast
wind activation. 61
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Figure 3.11: Variation of mean activation for the 4-day history and 3-day delay
model, for fast and slow solar wind prediction, respectively. The activation is shown
for models using 193Å and 211Å data respectively. The activation is shown over
CH and AR alone. The error bars indicate the standard error on the mean value, es-
timated from the standard deviation of the sample of activations. Please note that
the error bars here represent 3S, i.e., thrice the standard error to make sure they are
visible. Those activations with seemingly no error bars have very small errors.
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Figure 3.12: Variation of mean activation for the 4-day history and 2-day delay
model, for a fast and slow solar wind prediction, respectively. The activation is
shown for models using 193Å and 211Å data respectively. The activation is shown
over CH and AR alone. The error bars indicate the standard error on themean value,
estimated from the standard deviation of the sample of activations. Please note
that the error bars here represent 3S, i.e., thrice the standard error tomake sure they
are visible. Those activations with seemingly no error bars have very small errors.
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Chapter 4

The impulsively heated quiescent
solar corona

A complete understanding of the million-degree Kelvin solar corona de-
mands the study of QS regions. In this work, we first study QS regions
in the 171 Å, 193 Å and 211 Å EUV passbands of the AIA, and in the
1–1.3 keV, 1.3–2.3 keV, and 1–2.3 keV X-ray channels of XSM. We per-
form these studies by combining the empirical impulsive heating forward
model of Pauluhn & Solanki (2007) with a machine-learning inversion
model that allows uncertainty quantification. Through such an exercise,
we provide constraints on the impulsive event frequency (pf ), timescales
(τ ), and the distribution slope (α) across all the energy bands. Further-
more, we also provide constraints on the absolute event amplitudes (in
erg) and the radiative loss flux in X-ray owing to flux-calibrated measure-
ments. This thesis chapter is adapted from a set of two papers that origi-
nally appeared in the literature asOn the ImpulsiveHeating of Quiet Solar
Corona (DOI: 10.3847/1538-4357/abf65a ) and Nanoflare Heating of the
Solar Corona Observed in X-rays (DOI: 10.3847/2041-8213/aca078).

We have seen the solar wind and its sources in §. 1.2.2 and Ch. 3. However, the
solar wind itself owes its existence to the anomalously hot solar corona, which we
had a glimpse of in §. 1.2.1, bringing us to the coronal heating problem.

Wehave seen inCh. 1 thatwhile the solar corona is at amillion degreesKelvin, it
typically depicts three major morphological features – Coronal Holes (CHs), Active
Regions (ARs), and Quiet Sun (QS). All three regions are approximately at million
degrees Kelvin. The ARs are predominantly found during the maximum of the solar
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cycle, while the CHs dominate during the minimum. The QS, however, is present
irrespective of the activity phase. Conventional studies on the heating of the corona
predominantly focus on ARs (see Reale 2014, for a review) – with studies in QS and
CHs being sparse (see, e.g. Tripathi et al. 2021b). Thus, to address the physics of
coronal heating in general, a comprehensive study of the heating in QS regions that
exist independent of the solar cycle is of utmost importance(Aschwanden 2014).

Oneof themost popularmechanisms to heat the corona is via impulsive events,
for example, through Nanoflares (see, e.g. Parker 1988a). Impulsive events are
transients generated through the dissipation of magnetic stresses or waves (see,
e.g., Antolin et al. 2008). Solar atmosphere presents us with a plethora of impul-
sive events at various energies and time scales, viz. flares (Benz 2008; Tripathi
et al. 2004), microflares (Hannah et al. 2008; Schadee et al. 1983; Subramanian
et al. 2018; Chifor et al. 2006, 2007), active region transient brightenings (Testa
et al. 2013; Gupta et al. 2018a; Tripathi 2021; Vilangot Nhalil et al. 2020; Rajhans
et al. 2021), transition region blinkers (Harrison 1997), UV bombs (Peter et al. 2006;
Gupta & Tripathi 2015), Ellerman bomb (Ellerman 1917; Pariat et al. 2004; Isobe
et al. 2007a) and other activities such as jets (Mulay et al. 2016a; Raouafi et al.
2016). It is also observed that the properties of loops in ARs are well described
by the impulsive heating scenario (Ghosh et al. 2017; Tripathi et al. 2009a; Warren
et al. 2008; Gupta & Tripathi 2015;Winebarger et al. 2013b, and references therein).
Such a scenario has also been studied independently in ARs using a variety of tech-
niques like Time lag analysis (Viall & Klimchuk 2012, 2013, 2015, 2016, 2017), Dif-
ferential Emission Measure (DEM) and Doppler shifts analysis (see, e.g., Tripathi
et al. 2010, 2011, 2012; Winebarger et al. 2011; Warren et al. 2012; Winebarger et al.
2013a; Subramanian et al. 2014; Del Zanna et al. 2015), hydrodynamic modeling
(see, e.g. Bradshaw et al. 2012; Reep et al. 2013; Cargill et al. 2015; Barnes et al.
2016), Magneto hydrodynamic modeling (see, e.g. Rappazzo 2015; Rappazzo et al.
2017; Knizhnik et al. 2018, 2019; Knizhnik & Reep 2020) and empirical models (see,
e.g. Jess et al. 2019, 2014). Thus, it is natural to assume that the coronal heating in
QSmay also be governed by impulsive heating. However, since the QS regions have
a very diffuse structure, it is not possible to count individual events and understand
the energetics of these events in the QS.

We have seen in §. 1.2.1 that to maintain the corona at a million degrees, the
frequency distribution of impulsive events must follow a power law distribution in
energy – i.e., dN

dW
∝ W−α, with α > 2 (see Hudson 1991). Observations do show

that impulsive events in the corona follow a power-law distribution. However, there
is a range of α values reported in the literature (see, for example, Fig. 6.14 in As-
chwanden 2019, or Fig. 1.5 earlier in this thesis).
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One of themost significant caveats in these results occurs due to the assump-
tion that each detected event is a single entity. But, we know that small-scale impul-
sive eventsmay happen at a sub-resolution scale (Pauluhn & Solanki 2007). Hence,
individual brightenings may not be a single entity but may consist of many tiny
events. This may lead to the undercounting of events, particularly at lower ener-
gies. These individual events, however, leave a collective imprint on the entire light
curve in a statistical manner. These imprints have been shown to be statistically
reflected in the intensity distribution of light curves from Active Regions (see, for
example, the analysis by Vekstein 2009; Terzo et al. 2011; Jess et al. 2014, 2019)
and coronal loops seen in X-rays (Sakamoto et al. 2009). While individual events
may not be measured, their cumulative effect on the statistical properties of inten-
sity light curves can be leveraged to understand these events. Thus, the existence
of such small-scale events may only be inferred statistically.

Typically, a ‘statistically-realistic’ simulationwould reproduce somesalient prop-
erties of the observations well. A statistical and impulsively heated mechanism
may leave signatures in the distribution of intensity, the characteristic temporal
features, or in the thermal structure of plasma (see, for e.g. Sturrock et al. 1990;
Hudson 1991; Sylwester et al. 2019; Rajhans et al. 2021). Hudson (1991), for exam-
ple, show that the relative interplay of frequency of occurrence of events and the
time scale of the events reflect in the temporal power spectrum of the emergent
light curves.

However, some observations may be used to develop simple, empirical mod-
els. Typically, the observations of QS radiance in UV and EUV, both in space and
time, show log-normal distribution (Pauluhn et al. 2001; Andretta &Del Zanna2014).
Thus, the QS radiance might be generated due to some form of a Markovian pro-
cess (Pauluhn & Solanki 2007; Gorobets et al. 2016).

Using the Markovian property of the QS light curve, Pauluhn & Solanki (2007)
proposed an empirical model for heating the QS corona. Hereafter, we call it the
Pauluhn and Solanki Model (PSM). In brief, PSM approximates the response of the
plasma to a unit heating event as an exponential rise and fall of intensity. The am-
plitude of the heating event is sampled from a power-law distribution, with the fre-
quency of occurrence of the events being kept as a free parameter. The resultant
light curve is then a combination of a multitude of these events. Hence this ad-
dresses the sub-pixel resolution scale of these structures. Moreover, the resulting
intensities are also log-normal, mimicking the observations. Finally, the observed
power-law distribution of energetic events is also incorporated into this model, en-
abling us to understand the viability of impulsive events maintaining the observed
intensity in a given light curve. Thus, PSM may provide an excellent proxy for the
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generation of the QS coronal intensities.

The overarching goal of any such statistical model is to constrain its free pa-
rameters given observations. Once again, we circle back to the fact that we have a
hypothesis, which we then try to constrain/update/discard using available observa-
tions. Pauluhn & Solanki (2007) generate the parameters for different observations
by comparing the similarity of intensity distribution and the Global Morlét wavelet
power (Torrence & Compo 1998) of simulated light curves with those of observed
light curves. The comparison is qualitative – a sufficiently good match in distri-
bution and the frequency with excess power in the power spectrum was taken to
represent a good match between the observation and simulation. Although the
comparison had a sound basis, it was done by eye and needed a more quantitative
foundation.

The problem of obtaining parameters from the observed light curve thus be-
comes an inversion problem (or “parameter estimation”). In ML language, we have
a ‘supervised learning’ problem at hand. In general, the inversion approaches de-
pend primarily on generating important “features” from the light curves, which then
have a one-to-one mapping with the parameter set of PSM. This is performed qual-
itatively by Pauluhn & Solanki (2007). Since it is not trivial to objectively pick out
features for inversion, one trains an inversion model to pick out abstract features
and perform the inversion. In this case, an optimization principle guides the map-
ping from light curves to the parameter sets developed by the inversion model.

Tajfirouze & Safari (2012); Bazarghan et al. (2008) employed this method by
using a Probabilistic Neural Network (PNN). Under this scheme, every simulated
light curve is classified, where each class has a unique combination of free pa-
rameters. The PNN is trained on the full set of simulated light curves. Finally, the
observed light curves are fed into the PNN,which assigns each to one of the learned
classes. For their study, Tajfirouze & Safari (2012) used ≈ 10,000 light curves (at
max). These light curves corresponded to CHs, QS, and ARs on the Sun obtained
once again from AIA and data from the Extreme UltraViolet Imager (EUVI) on board
STEREO (Kaiser et al. 2008). On average, they obtained α > 2 for all the regions.

This method is a great start to a tricky stochastic inversion problem. But, such
an approach must be well-validated by an exhaustive testing set. Moreover, the
classification of light curves imposes a discretization constraint on the parameter
set, which depends on the grid resolution of the simulation. Thus, any assigned
class to a given light curve may change on improving the grid resolution. In other
words, we do not know the confidence level of the PNN for each inversion.

In this chapter, we develop an inversion scheme using machine learning called
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the iPSM. Thismodel is a CNN that takes in the light curves under consideration and
performs a regression on the target parameter set. We have seen CNNs earlier, in
§. 2.2 and §. 3. Recapping, a CNN may be thought of as a set of ‘kernels,’ which
perform convolution on the input and return a convolved output. The kernel size
can be interpreted as the scale over which information is summarized. Several
such kernels are operated on a given input, and these outputs are passed through
a non-linear function called the ‘Activation function.’ Successive kernels are thus
sensitive to local scales of the corresponding input, but that input itself may be an
extremely non-linear transformation of the original light curve. We use a CNN in
this work to preserve information on the time scales of features in the light curve
along with the distribution of intensity values

Furthermore, we employ the Inception module used in Ch. 3 for developing
iPSM. Since the Inception module makes it possible to perform multi-scale analy-
sis at each level, we hope to capture the multiple scales of variation in the data,
thereby circumventing grid resolution issues by considering the target as a regres-
sion problem. We can effectively interpolate between simulated grid points while
performing the inversion. We also obtain associated inversion uncertainties with
the CNN by perturbing the network.

Now, note that Tajfirouze & Safari (2012) used poor resolution of AIA 171 Å
data (90s cadence and 2′′spatial resolution) and further binned the data spatially
by 3 × 3 and 5 × 5 window. Such a binning will average out the small-scale events
and, thus, will not allow the use of the full potential of AIA observations. Hence, we
perform analysis with two sets of data. First, we use the full spatial, and tempo-
ral resolution observations that were taken using AIA and perform the parameter
estimation using iPSM, thereby circumventing the potential caveats in the work of
Tajfirouze & Safari (2012); Bazarghan et al. (2008) as detailed above. However, the
AIA data also come with their own caveats – the biggest caveat comes due to a
lack of absolute flux calibration. Thus, we also apply iPSM with an updated param-
eter search on full-disk integrated, flux-calibrated data from the Solar X-ray Monitor
(XSM) onboard Chandrayaan-2 mission (Vadawale et al. 2014; Shanmugam et al.
2020; Mithun et al. 2021a) of the Indian Space Research Organization (ISRO).

This chapter is structured as follows: we first describe the PSM in §. 4.1, which
is common to all analysis, following which we describe the DL inversion scheme
iPSM in §. 4.2. Then, we describe the AIA dataset and associated noise in §4.3.1
& §4.3.2, while we present the corresponding results in §4.3.5. We then change
gears to study the X-ray data by describing the data in §4.4. Specific to these X-ray
observations, we have a different way of incorporating themeasurement uncertain-
ties while also updating the iPSM to include a parameter search. These we explain
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in §4.4. We then showcase the results for X-ray observations in §4.4.6. Finally, we
discuss the consequences of our results in §4.5.

4.1 The PSM
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Figure 4.1: An example showing light curve generated using the Nanoflare gener-
ation model, similar to Fig. 2 of Pauluhn & Solanki (2007).

The forward model employed here, as mentioned earlier, is the PSM. This is an
empirical model based on two key observations, i.e., log-normal distribution of spa-
tial and temporal distribution of QS intensities (Pauluhn et al. 2001), and power law
distribution of energies from flares to micro-flares (see, e.g. Aschwanden 2019).
The algorithm may be summarised by asking the following questions:

1. What is the probability of a flare occurring at a given time step?

2. If a flare is meant to occur at the given time step, what would its peak energy
be?

3. How long will the flare last once it has occurred, i.e., the duration of the flare?

In this model, there are 5 free parameters: the event or flaring frequency (pf ),
i.e., the probability of a flare to occur at a given time; the duration of the individual
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flare event (τ ); the power law slope (α) and the minimum (ymin) and the maximum
(ymax) amplitude that is allowed for an individual flare event, which provides the
bounds of the power law. An example simulated light curve, depicting the forma-
tion of the light curve from individual events, is shown in Fig. 4.1. It may be seen
from here that given only the envelope light curve, the individual events may not be
inferred. The simulations are performed over a grid of parameter space while fixing
ymin and ymax, in preparation for the inversion of the observed light curves.

4.2 The iPSM

We perform the inversion using a 1-D CNN. In this approach, generally, there are
convolution layers followed by an activation layer. The activation function is a non-
linear function that forms the core of the complex learning ability of any NN. We
use the function Elu as defined in Eqn 4.1 as activation for all layers except the last
since Elu enables the network to train faster and generalize better (Clevert et al.
2015). For the final layer, we have no activation since this is a regression problem
mapping to a continuous variable.

Elu :=

{
ex − 1 , if x ≤ 0

x , else
(4.1)

A graphical representation of the model architecture is shown in Fig. 4.2. As de-

Figure 4.2: CNN architecture used in iPSM. The blue boxes indicate input/output
layers, and the other colors indicate trainable layers. The tensor shapes are given
in square brackets as [ ], and the number outside, for the Convolution layers, is the
stride size. FC denotes the fully connected layers.

picted in the figure, there are input/output layers, convolution layers (where we im-
plicitly assume the activation function to be present), and fully connected (FC) lay-
ers. In the tensor shape, ‘None’ is generally used to denote a variable size, repre-
senting the number of light curves to be inverted during a single forward pass. The
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convolution layers (marked in red) are given a 4-dimensional shape, representing
[height, width, input channel, output channel], and the stride size given by an inte-
ger. Note that “channel” here is not to be confused with AIA passbands and that
since we have used a 1-D signal, the height is set to 1. After a suitable number
of convolutions, the array is unrolled to 1D and captured by fully-connected layers
(marked in yellow).

Any CNNwould need the number of features in the input and output to be fixed
– i.e., the length of the light curve and the number of parameters to be inferredmust
be fixed. We fix these to be of length 2400 time steps and 3 parameters – i.e., we
infer only pf , τ , and α with this scheme.

4.2.1 Data preparation and training

For a given grid of parameters –which depends on the dataset used–, we divide the
simulated light curves into a training set (80%) and a testing set (20%). However,
before feeding any data to the CNN, it must be prepared appropriately to ensure
all the parameters are of the same scale. The training set parameters are rescaled
between 0 and 1, and the testing set parameters are rescaled using the training
statistics, as is the standard procedure in machine learning. All light curves are
also rescaled between 0 and 1.

We train the CNN by feeding in the training set light curves and obtain three
free parameters (pf , τ , and α). This obtained parameter set is then compared with
the original target parameter set using an error metric, which is used to update the
kernel values of the CNN. The error metric is the sum of the two terms defined as:

L1(x̂, x) := Σi |xi − x̂i| ,L2(x̂, x) := Σi (xi − x̂i)
2 , (4.2)

where x is the target parameter set, x̂ is the predicted parameter set, and the sum-
mation is performed over all observations and all parameters.

In Ch. 3, we have seen how anyML/DL exercise involves both model and some
free parameters called ‘hyperparameters.’ Such a case holds for this work too. The
hyperparameters for generating the iPSM are fixed. For training the iPSM, we have
used the “Adam Optimizer” (Kingma & Ba 2014), which is a stochastic optimiza-
tion algorithm. The “size” of the update at each step is controlled by the hyper-
parameter called the learning rate.

Overfitting is a serious issue in NN training whereby the model starts fitting
the noise in the model and stops generalizing. This may result in erroneous results
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and interpretations of inversion. To prevent overfitting, we use dropout (Hinton et al.
2012), which switches off neurons randomly with a fixed probability for every for-
ward pass. The training hyperparameters are summarized in Table. 4.1.

4.2.2 Uncertainty estimation

A CNN generates a single prediction for a given forward pass. However, in general,
two kinds of uncertainties – Epistemic and Aleatoric- are associated with any such
predictions (Kendall & Gal 2017). Epistemic uncertainty relates to model uncer-
tainty due to the unexplored weight space of the neural network. Aleatoric uncer-
tainty relates to the inherent uncertainty in the target parameter values. Our study
has no Aleatoric uncertainty because the parameters are predefined grid points.
Hence, we have only Epistemic uncertainty.

Deficiencies in model training, resulting in unexplored weight space, can occur
if not enough data is provided during model training. Hence, this effect can be sim-
plyminimized by increasing the size of the training set. However, while informing us
about the deficiencies in fitting, the epistemic uncertaintymeasuremay also inform
us about any outliers in the dataset. Throughout the analysis in this work, the PSM
is assumed to be the ground truth, i.e., it fully describes the observed light curves
to infer parameters. This is never the case with any model. Hence, departures of
the observations from simulations, where the PSM does not fully explain the given
observation, would behave as outliers. Hence higher uncertainties associated with
the parameters inferred from the observations tell us either there are deficiencies
in model fitting in certain regimes or the light curve is not explained well by the PSM.
However, we note that it is practically impossible to disentangle these effects (see,
e.g., Kendall & Gal 2017).

The epistemic uncertainty may be estimated by application of dropout (Hinton
et al. 2012; Díaz Baso et al. 2019). In addition to being used to prevent overfitting,

Table 4.1:: Training Hyperparameters

Hyperparameter Value
Cost function L1(prediction,target)+L2(prediction,target)
Optimizer Adam Optimizer with default values

Learning rate 1e− 3

Dropout rate 0.2

No. of iterations 3000
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Dropout can also be used to create perturbations and obtain the variability in the
predictions (Gal 2016). Since the neurons switched off in every forward pass are
random, we perform a Monte Carlo forward pass to obtain multiple realizations of
the CNN and present the mean and standard deviation from the passes. Thus, the
error bars reported for the estimated parameters of an individual light curve are the
standard deviation obtained from Dropout.

4.3 Analysis on AIA EUV data

4.3.1 Observations and Data

As we have seen in §. 2.1.1, AIA observes the Sun’s atmosphere in UV and EUV
bands using eight different passbands sensitive to plasma at different tempera-
tures (O’Dwyer et al. 2010b; Boerner et al. 2012b). For our analysis, we consider
the data taken using 171 Å, 193 Å, and 211 Å passbands. These images are taken
with a pixel size of ∼0.6′′ and an approximate time cadence of 12 s. We have cho-
sen these particular passbands since the count rates in these passbands for QS is
large when compared to others (see Table 2 in O’Dwyer et al. 2010c).

Monitoring the EUV images on Solar Monitor 1, we identified QS patches dur-
ing 2011 and 2019, where no activity was observed. Details of the two data sets
(DS1 & DS2) are given in Table. 4.2. We have obtained eight continuous hours of
data for each set, corresponding to 2400 time steps. All the images are aligned to
the first image and are exposure time normalized. The full FOV (single snapshot)
for DS1 and DS2, as observed in 171 Å, is displayed in the left panel of Figs. 4.3 &
4.4 with the corresponding spatial distribution of intensities in the right panels.

To study the distribution of the intensity for each pixel, we create light curves of
intensity in all three passbands. We plot sample light curves fromboth the datasets
for one passband and their corresponding distribution in Figs. 4.5 & 4.6 for a single
pixel. Note that we also show time series of magnetic flux density of the corre-
sponding pixel taken from the Helioseismic and Magnetic Imager (HMI; Scherrer
et al. 2012) on board SDO corresponding to the AIA Field of View (FOV). The LOS
magnetograms are obtained by HMI at approximately 45 s cadencewith a pixel size
of 0.5′′. We map the HMI data to the same plate scale as that of AIA. The error in
HMI LOS measurements is estimated to be ± 10G (Yeo et al. 2014; Couvidat et al.

1https://www.solarmonitor.org/
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Table 4.2:: Dataset details for QS heating in EUV

Identifier DS 1 DS 2
Start time 2011-08-14 T00:00:00 2019-05-02 T00:00:00
End time 2011-08-14 T08:00:00 2019-05-02 T08:00:00
Reference time 2011-08-14 T00:00:00 2019-05-02 T00:00:00
Xcen,Ycen 192′′, 749′′ 19.0′′, 211.5′′

FOVx, FOVy 230′′, 116′′ 346.0′′, 269.0′′

Instrument AIA AIA
Passband 171,193,211 171,193,211
Exposure normalize True True
Cadence 12 sec 12 sec
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Figure 4.3: 171 Å image of quiet Sun corresponding to DS1, and the corresponding
histogram of intensity.
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Figure 4.4: Same as Fig. 4.3 but for DS2.

2016), and this is depicted in the figure as the black horizontal line. The time series
for intensity and magnetic flux density are shown in panels b and c. The distribu-
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tions are shown in panels a and d, respectively, which demonstrate the log-normal
distribution, as was previously observed by Pauluhn & Solanki (2007) in SUMER
observations and Tajfirouze & Safari (2012) in AIA observations.
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Figure 4.5: Intensity andMagnetic field intensity time series of 1 pixel from the FOV
of DS 1, and their corresponding distributions, as labeled. The 10 G noise level has
been indicated in (c) and (d).
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Figure 4.6: Same as Fig. 4.5 but for DS2.
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4.3.2 Noise characterization
The observed EUV light curves, shown in Figs. 4.5 and 4.6, have inherent noise,
which is essentially dominated by photon shot noise. Thus, we would need to mit-
igate the presence of this noise. Generally, the noise would be incorporated into
the simulation set so that the neural network learns to differentiate between noise
augmentation and signal. However, we have ≈ 900, 000 light curves across all the
passbands, and incorporating the specific noise characteristics of each light curve
into the simulation would increase the dataset manyfold. Due to a lack of compu-
tation power, we do not perform such a task. Instead, we come up with a scheme
to reduce this noise while preventing over-smoothing (and thus averaging over real
events). We call this procedure Finding kneemo.

Finding kneemo is based on existing knee analyses performed in Machine
learning. Broadly, the goal of the algorithm is to monitor a performance metric
against the free parameter of smoothing, which, in our case, is the size of the
smoothing window. The window size for which we observe a drastic improvement
in performance metric is taken as the box-car window. The change point is gener-
ally known as “the knee”.

The knee determination is extremely qualitative, though some methods exist
which quantify this well (see, for example Salvador & Chan 2004). In our analy-
sis, we consider a random light curve for a pixel in our data set, along with its er-
ror time series, obtained from aia_bp_estimate_error.pro. We smooth the light
curve using a box-car of box size varying between 1 and 100 and obtain its mod-
ified SNR (Signal-to-Noise Ratio). We then plot the obtained SNR against the box
size in Fig. 4.7, along with the asymptotes of the SNR, and find their point of in-
tersection. This point is then selected as the box-car window size. From Fig. 4.7,
we find that the asymptotes intersect at a box-car size of 5-time points. Therefore,
we use this value to enhance SNR. Note that we have run this analysis on several
lightcurves within our dataset and have found a consistent result. Thus, we have
performed box-car averaging with a box size of 5-time points for all the light curves
in our dataset. An example plot with the original and the smoothed light curve is
shown in Fig. 4.8. Our observed data is now ready. We next need to ready the
simulation grid and get the iPSM trained and ready.

4.3.3 PSM grid for EUV data

We perform the simulations over a large parameter space, as detailed in Table 4.3.
We generate the light curves for a length of 5L + 1600, where L is the length of
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Figure 4.7: SNR variation with box-car window. The black dots represent the vari-
ation, while the red dotted lines represent the asymptotes. The vertical black line
shows the approximate point of intersection (marked as blue)

Table 4.3:: Simulation grid parameters. Note that all parameters are in code units.

Parameter Range Stepsize
pf [0.05, 0.95) steps of 0.05
α [1.1, 3.0) steps of 0.1
τ [1, 100) steps of 2.0
ymax 0.3
ymin 0.03

the light curve (2400 in our case), and reject 800 samples from either side to re-
move boundary effects. The remaining light curve is folded 5 times to get a final
light curve of length L2. This is done to minimize the effects of the initial seed for
random number generators. The observed light curves are normalized by their me-
dian values, following Bazarghan et al. (2008). Hence, the radiances reported from

2Folding essentially divides up the light curve in 5 equal chunks of length L and gets the average
curve from these chunks

77



CHAPTER 4. QUIET SUN HEATING X DEEP LEARNING

0 100 200 300 400 500
Time (min)

100

120

140

160

180

200

220
In

te
ns

ity
 (D

N
/s

)
Original light curve

0 100 200 300 400 500
Time (min)

120

140

160

180

200

In
te

ns
ity

 (D
N

/s
)

5-point smoothed light curve

Figure 4.8: Comparison of original and smoothed light curves by Finding kneemo.

hereon have no associated units. Finally, we train our model with the simulations
and perform inference on all three passbands with the same inversion model.

4.3.4 EUV iPSM inversion performance

To assess the performance of iPSM, we display scatter plots between the target and
predicted values of pf (left panel), τ (middle panel), and α (right panel) in Fig.4.9. As
can be readily noted, the predicted values lie very close to the target values, thereby
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Figure 4.9: Correlation plot of target and predicted parameter values from our CNN,
for pf (left), τ (center), and α (right). This quantifies the generalizability of the CNN
from the training set.

validating the performance of our network on a test set. This may be quantified
using the coefficient of determination (R2) defined as:

R2 := 1− Σi (xi − x̂i)
2

Σi (xi− < x >i)
2 , (4.3)

where < x > represents the mean of target set, x = {xi} represents the target
values, and x̂ = {x̂i} represents the predicted values. In this case, i corresponds to
the number of points in the test set, i.e., R2 is computed separately for each target
parameter. The R2 values are 0.990, 0.999 and 0.97 for pf , τ and α, respectively,
showing excellent performance of our network. Our network is now ready to be fed
with the observed intensity light curve.

4.3.5 EUV: Results

Now we discuss the application of the network on the EUV light curves. We first
discuss the results obtained for a single light curve in §4.3.5. Then, we discuss the
results obtained for all light curves obtained for all three AIA passbands. We finally
explore the various correlations between our parameters and perform an analysis
of the involved energetics.

Application of the CNN on a Single Light curve

For representation purposes, we choose the intensity light curve for a random pixel
from DS1 and DS2 and obtain the corresponding simulated light curve. It is impor-
tant to note that since PSM is a statistical model which generates a representation
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of the observations “statistically”, one should not perform a point-by-point compar-
ison of the simulations with the observations. A simple change in the random num-
ber generator’s seed can change the exact times when events occur. Furthermore,
since the amplitude of events is sampled froma distribution, the randomseed value
can also change the event amplitude at particular times. However, these seeds
cannot change the overall statistical properties of the light curve. Thus, a compar-
ison of the observation and simulation must be made using statistical properties
of light curves (e.g., intensity distribution, frequencies showing enhanced power)
rather than a pointwise comparison of light curves. Once a good representative
simulated light curve is obtained, the corresponding parameter set is taken to char-
acterize the observed light curve.

In Figs. 4.10 and 4.11, we show the comparison between observed (orange)
and simulated (blue) light curves (panels a), Kernel Density Estimation (KDE) of in-
tensity distribution (panels b), the Global Morlét power spectra (panels c) and the
cumulative distribution function (CDF; panels d). Note that the observed and sim-
ulated light curves are normalized by their median values. The parameter sets for
the simulated light curves are the mean values of the obtained parameter distribu-
tion by performing 1000 Monte Carlo simulations and are denoted at the bottom of
the figures. The KDE can be understood to be essentially a continuous extension
of histogram (see, e.g. Chen 2017). Note that pf and τ are defined as per time step
in Fig. 4.9, and may be converted into real units as

pf (per min) =
pf (inferred)

Cadence(min)
,

and
τ(min) = τ(inferred)× Cadence(min).

The pf denoted henceforth is given as the number of events per minute, while τ

is the timescale in minutes. The α remains a dimensionless parameter. From
Fig. 4.10a and 4.11a, we can see an excellent statistical correspondence between
the observed and simulated light curve. This is corroborated by the match in their
corresponding KDEs (panel b) and CDFs (panel d). Furthermore, theMorlét wavelet
power spectrum shows peaks at corresponding frequencies for both the observed
and simulated light curves. These results confirm that the Inversion model was
able to learn both the time series and distribution properties corresponding to the
3 free parameters. We further emphasize that the value of α inferred in these two
cases is≥ 2, which in turn suggests that events with smaller energy are dominantly
responsible for generating the radiance of these particular examples.

From Figs. 4.10 and 4.11, we find a clear relationship between the goodness
of representation of simulated light curve (using CDF and Morlét Power) and the
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Figure 4.10: The comparison of a representative light curve obtained for 171 Å
passband fromDS1with a simulated light curve. Observations are shown in orange
translucent, and simulations are shown in blue. Panel a: Normalised observed and
simulated light curves; Panel b: KDE of observed and simulated light curves; Panel
c: Global Morlét power for observation and simulations; panel d: Cumulative Dis-
tribution Function (CDF) comparison of simulation and observation.

spread of parameters obtained by Monte Carlo simulations. Consider the percent-
age uncertainty (i.e., uncertainty/mean value) – we find this quantity is approxi-
mately 3% in pf for DS1, 6% in pf for DS2; ∼ 5% in τ for DS1 and ∼ 4.5% DS2; and
∼ 12% for DS1 and ∼ 15% for DS2. The Inversion model is hence more certain of
the parameters of DS1 than DS2, which is also reflected in the relative mismatch
of Morlét power between the observation and simulation for DS2 over DS1 at the
first two peaks (note the difference in y-axis limits in panels c). Thus, such an uncer-
taintymeasure, along with theMonte Carlo forward pass, can help us explain which
parameters are strongly influencing the quality of a given inversion, assuming PSM
as the ground truth.
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Multi-light curve - multi-passband analysis

Since our network gives reliable results for the light curve obtained for a random
pixel in both the data set, we now take all of our light curves (331967 light curves per
passband) for the three AIA passbands and pass them through the network to ob-
tain the relevant parameter set for each light curve. Due to operational constraints,
we perform only 100 Monte Carlo forward passes in this case. We emphasize that
the obtained parameter set for 100 and 1000 Monte Carlo forward passes are sta-
tistically the same for a limited, handpicked set of representative light curves. For
both data sets, we first divide each light curve by its median value, rescale between
0 and 1, perform the Monte Carlo forward pass through the CNN, and obtain the
mean parameter set. Finally, we concatenate the parameter set across the whole
field of view for both data sets separately for each AIA passband to improve our
statistics. This concatenation can be done since all light curves are from QS re-
gions and are evolving independently. Fig.4.12 displays the distribution of flaring
frequency pf (panel a), duration τ (panel b), and power-law slope α (panel c) for this
concatenated dataset. The solid blue curves are for 171 Å, dashed-dotted red for
193 Å, and dashed green are for 211 Å observations.
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Figure 4.11: Same as Fig. 4.10, but for DS2.
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Figure 4.12: Distribution of inferred parameter set for pf (panel a), τ (panel b) and
α (panel c) over both the datasets. The colours are distributed as blue (171 Å), red
(193 Å) and purple (211 Å).

The plots reveal that the distribution of all three parameters for all passbands
is remarkably similar. The pf distribution peaks at∼ 2.2 events perminute for 171 Å
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and at∼2.4 events per minute for 193 and 211 Å, with a range of values between 1
and 4 events per minute. The distribution of τ peaks near 12 minutes for 211 Å, 14
minutes for 193 Å and 16 minutes for 171 Å, implying a slight temperature depen-
dence. However, we emphasize that since the AIA passbands are multi-thermal,
this inference should be taken with caution. The distribution of α, plotted in panel
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Figure 4.13: Variation of pfτ with α. The vertical dashed line marks α = 2. The
error bars are 3σ standard errors.

c, ranges between 1.0 to 8, with a peak at ∼ 2.3 for all three passbands. When we
consider the whole set of light curves, we find that ∼ 62% of light curves in 171 Å
have α ≥ 2, while the fraction is ∼ 61% and ∼ 54% respectively for 193 Å and 211 Å
passbands respectively. Thus, we find a reduction in the dominance of lesser en-
ergy events as we progressively probe the QS in hotter passbands. We also note
that the fall-off for all three parameters goes from the hotter passband (i.e., 211 Å)
falling off first, followed by progressively cooler channels (193 and 171 Å respec-
tively).

To further understand any peculiarities exhibited by the QS in the two regimes
of α, we plot the variation of pfτ with α in Fig. 4.13. The factor pfτ may be inter-
preted as the ratio of excitation (i.e., intensity generation by pf ) to damping(i.e.,
intensity dissipation by τ ) for a given pixel, following Pauluhn & Solanki (2007).
Here, we investigate the dominance of one over the other. To boost the SNR, we
have averaged pfτ within a constant bin of α. Note that the bin size for averaging
is obtained from Doane (1976). The error bars shown are 3σ standard error3.

The plot reveals that there is almost no change in the excitation to damping

3Standard error is defined as σ/
√
N , where σ is the standard deviation in the sample present in

the bin, and N is the number of points in the sample
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ratio for α < 1.8 and is independent of α in this regime. However, for α ≥ 1.8,
the dynamics changes, and we find a reduction in the ratio with increasing α. The
larger error bars at the end are due to poor statistics. But even considering the
variation tillα = 4, we find a considerable reduction in the ratio withα, presenting an
increasing dominance of damping overexcitation. Thus, there is either a reduction
in excitation, or an increase in damping, or both, which comes into play once the
smaller events start dominating radiance generation.

Energetics

With the parameter set obtained, we can now investigate the involved energetics.
A simple way to understand the energetics is by comparing the behavior of the
slope α vis-a-vis the other free parameters. A large slope implies a predominance
of smaller energies, while a small slope implies a predominance of larger energies.

To quantify relations in terms of the peak intensity of a nanoflare, Pauluhn &
Solanki (2007) defined the average peak nanoflare radiance (Eavg) as:

Eavg :=

(
1− α

2− α

)
.

(
y2−α
max − y2−α

min

y1−α
max − y1−α

min

.

)
(4.4)

Eavg is a measure of the average peak nanoflare radiance value for a given time
series. Using Eq. 4.4, we estimate the values of Eavg for each pixel and study its
relationship with flaring frequency (pf ) as well as flare duration (τ ) through scatter
plots between these parameters.

In Fig. 4.14, we plot pf (left panel) and τ (right panel) as a function of Eavg for
all three wavelengths. We have averaged the free parameters within a constant
bin of Eavg , and our error bars are 3σ standard errors. The plots reveal a slight
tendency of decreasing pf as a function of Eavg , albeit there is a sharp decline in
the beginning. However, τ monotonically increases with increasing Eavg till about
Eavg = 0.085 and shows saturation thereafter. Moreover, the plot further suggests
a systematic lowering of flaring duration, being largest for the coolest passband
(171 Å).

These are the dynamics revealed by ≈ 900, 000 light curves from EUV across
three passbands. However, quantities like Eavg are left dimensionless, thereby pre-
venting a determination of the exact energetics involved in the impulsive heating
paradigm. To this end, we now apply iPSM on the X-ray data from Chandrayaan–2.
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Figure 4.14: Inferred dependence of free parameters (binned) on Eavg , over differ-
ent passbands. Blue colour represents 171 Å, red for 193 Å and green for 211 Å.
Left: pf is plotted perEavg bin; Right: τ is plotted perEavg bin. The error bars indicate
3σ.

4.4 Analysis on X-ray data

We shall now look at the analysis and results from the X-ray data. We shall first
have a look at the Data in §. 4.4.1, an overview of the modeling in §. 4.4.2 along
with generating bounds of energies in §. 4.4.3. We shall then look at the statistical
uncertainty model in §. 4.4.4, with the updated parameter search in §. 4.4.5. We
shall look at the results in §. 4.4.6.

4.4.1 Observations and Data

We now use the observations recorded by the XSM on-board Chandrayaan-2 mis-
sion. XSM observes the Sun as a star and provides themeasurement of X-ray spec-
tra in the energy range of 1–15 keV. It has been demonstrated that XSM has the
sensitivity to carry out spectral measurements even when the solar activity is well
below A-class (Mithun et al. 2020). Thus, it is possible to use XSM observations to
obtain X-ray flux from the Sun during quiet phases.

We have selected XSM observations for two time periods (Oct 17–21, 2019
and Feb 14–21, 2020) when there were no active regions on the solar disk as con-
firmed from Solar Monitor 4. In this work, we are interested in studying the contri-

4https://solarmonitor.org
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bution of unresolved impulsive events to the quiet coronal light curves and not the
well-resolved events like microflares. Thus, by visual inspection of the X-ray light
curves, we removed the microflare-like events studied by Vadawale et al. 2021b so
that the selected observations forma true representation of quiescent solar corona,
similar to Terzo et al. (2011). This step inevitably gave rise to data gaps. However,
since we are interested in a statistical study of the QS light curves, we have con-
catenated the light curves by ignoring the gaps and obtained a continuous time
series.

For the selected duration, wegenerated effective area-corrected and time-resolved
X-ray spectra from the rawdata usingXSMDataAnalysis Software (XSMDAS;Mithun
et al. 2021b). Given the very low solar X-ray flux during these observations, the time
bin size for spectrawas chosen to be 2minutes so that uncertainties on the flux due
to counting statistics are typically less than 5%. The X-ray flux light curve, F (t), in
the energy range E1 to E2 is then computed from the time-resolved spectra S(E, t)

as:

F (t) =

E2∑
E=E1

S(E, t) E

A(E)
(4.5)

where A(E) is the on-axis effective area of the XSM (Vadawale et al. 2021b). For
both the observations, we generated light curves using eq. 4.5 for the energy ranges
of 1.0–1.3 keV, 1.3–2.3 keV, and 1.0–2.3 keV. The light curves so obtained are
shown in Fig. 4.15. Spectra above 2.3 keV are not considered as no appreciable
flux is observed above that energy by XSM during QS observations.

4.4.2 Overview of modelling

We need to perform inference of pf , τ , α, ymin and ymax given the X-ray light curves
from XSM as shown in Fig. 4.15. Since the XSM light curves have absolute flux cal-
ibration, we would like to perform a coarse parameter sweep to provide constraints
also on ymin and ymax. While the iPSM model forms the core inference block of our
work, the optimization for all 5 parameters is inherently difficult to perform due to
degeneracy in the parameter space. Hence, iPSM performs inference of only three
of the free parameters while keeping ymin and ymax fixed. Hence, we breakdown
the inversion scheme into two steps (see Fig. 4.16), i.e., determining pf , τ and α

in the first step and ymax, ymin in the second step by performing a fine search over
the exact range of amplitude of the events. As shown in Fig. 4.16, each step fur-
ther consists of several parts. However, the first step requires we already have a
reasonable estimate of ymax and ymin. Hence, we first put reasonable bounds on
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Figure 4.15: The XSM observed light curves considered in this work. The left(right)
column is for 2019(2020) observations. The top row is the light curve for 1.0–
1.3 keV, the middle row is for 1.3–2.3 keV, and the bottom row is for 1.0–2.3 keV.

PSM simulations: 
Vary pf,𝜏,𝛼 with guess ymax, ymin

Simulation bank iPSM Convolutional 
Neural Network

Target 
parameters

XSM light curves Infer pf,𝜏,𝛼 

PSM: Vary only 
ymax, ymin

Minimize Metric

iPSM Convolutional 
Neural Network

Infer ymax, ymin

Training iPSM

Inference time

Metric minimize

Figure 4.16: Flow chart detailing the various steps in our algorithm. First, the iPSM
is trained on simulations. Next, the trainedmodel is used to infer pf , τ , andα. Finally,
the ymax and ymin are inferred by minimizing an error metric.
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the range of values ymax and ymin can take by using prior observations and fixing
an initial guess. Using this ymax and ymin, we generate a bank of the PSM simula-
tions sweeping across a range of pf , τ and α. Note that this bank of simulations
is different from the one used in our EUV analysis. We then use this simulation
bank to train the iPSM (the “Training iPSM” block in Fig. 4.16) and learn the map-
ping from the simulated light curves to their corresponding parameters. Finally, we
perform a forward pass of the XSM light curves through the trainedmodel and infer
the corresponding values of pf , τ , and α (“Inference time”, pink colored section in
Fig. 4.16).

Using the inferred values of pf , τ and α from step–1, in step–2, we generate
another bank of simulations, this time sweeping on ymax and ymin. Note that the
range of ymax and ymin is within the bounds as described in step–1. Finally, by
minimizing an appropriate metric, we perform a parameter sweep considering the
XSM light curves to infer ymax and ymin (“Metric minimize”, sea green section in
Fig. 4.16). Thus, through a two-step process, we infer all the 5 free parameters of
the PSM.

4.4.3 Fixing ymax and ymin

As described above, for generating the simulation bank for iPSM in step–1, we need
to fix ymax and ymin. Furthermore, we need to define bounds of ymax and ymin over
which the step–2 search is performed. To do so, we first fix the upper bound of ymax

and lower bound of ymin approximately, and then fix the ymax and ymin values within
this range for step–1. We first define the integrated energy per impulsive event as:

E = 4πR2
1AU · τ · Fmedian · Fcode, (4.6)

where E is luminosity in a given energy band, Fcode is the amplitude of an event
in code units, τ is the associated timescale (in seconds), R1AU the distance from
Sun to Earth in meters, and Fmedian the median intensity of the XSM light curve in
Wm−2. Note that since we divide the observed light curves by their median values
during training and inference time, the event amplitudes in code units would need
to be multiplied by the same scaling to get the correct dimensional values. This
conversion factor in Eq. 4.6 helps us translate from the energy of an event in code
units to real units. Since we want to generate bounds on ymax and ymin, we fix the
bounds for Fcode, given other terms in Eq. 4.6.

Eq. 4.6 has terms on the right-hand side (except Fcode) common for both the
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upper bound of ymax and lower bound of ymin. Let us consider the median intensity
in the 1–2.3 keV energy band, which is ≈ 5 × 10−9 Wm−2 (see Fig. 4.15), 1 AU
to be ≈ 1.5 × 1014 m, and a maximum time scale of ≈ 720 seconds. We obtain
this timescale from the iPSM inversions of light curves in the 211 Å passband of
QS as seen in §.4.3.5. The AIA 211 Å passband corresponds to a temperature of
log T ≈ 6.2, while the X-ray measurements typically lie in the range of log T ≈
6.2 − 6.8 (Vadawale et al. 2021a). Thus, we use the 211 Å results as a proxy for
the X-ray measurements. Hence, an event with unit amplitude event (i.e Fcode = 1)
would correspond to an energy of ≈ 1025 ergs.

First, we generate an upper bound for ymax. We note that all the microflares
studied by Vadawale et al. (2021a) have been removed from our dataset. Hence, an
individual event in our simulation cannot be larger than the smallest flare observed
by Vadawale et al. (2021a). Since we are operating in a particular energy band, we
redo the energy distribution computation in Vadawale et al. (2021a) for the energy
band of 1–2.3 keV. The lowest energy thus inferred by Vadawale et al. (2021a) for
this energy band corresponds to 1024 ergs. This corresponds to ‘E’ in Eq. 4.6. Thus,
Fcode should be < 0.1 for the maximum amplitude condition to be satisfied. Thus,
we obtain an upper bound on ymax – i.e, ymax < 10−1.

Having fixed the upper bound for ymax, we turn our attention to fixing the lower
bound on the ymin. We consider the energetics of fluctuations observed in soft-X
ray light curves derived by Katsukawa & Tsuneta 2001; Katsukawa 2003. These
authors found the energies of impulsive events of ≈ 1020−22 ergs consistent with
the distribution of fluctuations of soft-X ray light curves in active regions. Labonte
& Reardon (2007), however, showed that the fluctuations in the light curves as ob-
tained by Katsukawa & Tsuneta (2001) are consistent with noise. Thus, we take
the lower limit of the possible energies and set a lower bound on ymin as 1020 ergs,
where the lower limit corresponds to “noise” events. This value would correspond
to ymin > 10−5 in code units, following Eq. 4.6. Thus, the event amplitudes may lie
only between 10−5 and 10−1. Hence, these physical observations set the general
bounds of the range of the expected energies of events.

We have obtained the lower bound on ymin and the upper bound on ymax. To
fix the values of ymax and ymin in step–1, we prototype on a very limited combina-
tion of ymax and ymin, generating one iPSM model for each combination. Through
visual inspection, we find ymax and ymin of 5× 10−3 and 10−4 (code units) to give us
simulations which show a goodmatch in the intensity distribution & wavelet power
spectrum with the XSM observation. Thus, we fix ymax and ymin to be 5× 10−3 and
10−4 for generating the bank of simulations for step–1 of our inversion.
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4.4.4 Statistical uncertainty model and simulation bank genera-
tion

Using all the parameters discussed above, we generate simulated light curves that
can be compared with the observed light curves from XSM. However, the QS is
known to have weak emission in X-rays (see, for example, Brosius et al. 1997; Kat-
sukawa & Tsuneta 2001; O’Dwyer et al. 2010b), and is expected to have a non-
negligible contribution of counting statistics. Therefore, the associated simulated
light curves must be incorporated with these statistical uncertainties for an objec-
tive comparison.

For the EUV data, we developed the algorithm Finding kneemo to smooth the
light curves. We performed this smoothing simply becausewe did not have enough
compute to generate a humongous dataset of simulations incorporating the ob-
served statistical uncertainties. Now, however, we only have 6 X-ray observations
– thus, we can incorporate these statistical uncertainties in the simulations them-
selves and do not need to resort to the smoothing by Finding kneemo.

For this purpose, we estimate the statistical uncertainties on the light curves
by propagating the Poisson error on the observed count for each light curve. Hence,
for each observed light curve to be inverted, we know the signal and the associated
uncertainty at each time step.

To get a non-dimensional estimate of the uncertainty as a single number for
the full light curve, we first calculate the uncertainty-to-signal ratio rt at each time
step for a given XSM light curve. This provides a measure of the “uncertainty fluc-
tuation” as a fraction of the signal. The mode of rt, denoted as r, is the estimate of
uncertainty as a fraction of the observed signal for the full light curve. We obtain r
for each observed light curve.

To incorporate this uncertainty into each simulated light curve, we replace the
intensity at each time step with a sample from a Gaussian distribution with a mean
of the simulated intensity (from the PSM), and a standard deviation of r times the
intensity at that time step. This is justified as while the original photon counts fol-
low a Poisson distribution, the flux values after integration over two minutes are
expected to follow a Gaussian distribution. Since there are 6 light curves, we have
6 associated sets of simulations for each light curve.

Finally, we simulate the light curves by taking care of all the steps explained
above. We generate simulated light curves for a duration of 2400×120 =288000
seconds at a time cadence of 1 second, i.e., 1 code time step = 1 second. To
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minimize the effect of starting seed, we generate the simulations with extra 1600
seconds and throw away the first and last 800 seconds. The simulations are then
re-binned at a 120-second cadence, giving rise to 2400 time points to match the
observations.

We incorporate the statistical uncertainties to each simulated light curve and
normalize each by its median value as a pre-processing step to the iPSM. After pa-
rameter inference, we construct the best-matching simulations by multiplying the
median normalized simulations with the median value of the corresponding obser-
vation. This gives us simulation light curves in the units of W m−2. Since we are
scaling the intensities in the simulations, we also scale the corresponding ymax and
ymin values, which determine the amplitude of these events in the same way.

For step–1, we generate the bank of simulations by varying pf between 3 to 57
events per minute, which translates to pf between 0.05 to 0.95 events per second
in steps of 0.01 events per second. The time scale τ is varied between 1 second
and 500 seconds in steps of 10 seconds, while α is varied between 1.5 and 3.0 in
steps of 0.1. This parameter space is similar to Upendran & Tripathi (2021a). We
have, however, reduced themaximum value of τ (in seconds) since we expect X-ray
observations to showmuch shorter time scales than EUV observations, as seen by
Upendran & Tripathi (2021a).

We then perform the step–1 inference using the iPSM model, as detailed in
§. 4.2. However, since the simulations in thiswork need to be uncertainty-incorporated,
we retrain the model from scratch for the new set of simulated light curves. We
generate 6 inversion models in total corresponding to each light curve. All of our
models show R2 > 0.98 for pf and τ , while the R2 for α are more than 0.91. This
step is depicted graphically as the yellow and pink flow diagrams in Fig. 4.16. Thus,
we infer pf , τ and α for each XSM light curve from step–1.

4.4.5 Beyond iPSM: Metric minimization

In step–1, we have inferred three parameters pf , τ and α for fixed values of ymin

and ymax. In step–2, we fix these three parameters and generate a new set of light
curves by sweeping ymax and ymin. We sweep ymax between 9 × 10−4 and 5 × 10−2

with 45 steps in log10, and ymin between 1×10−5 and 5×10−4 for 36 steps in log10. We
incorporate the photon counting uncertainties on these light curves as described in
§4.4.4. These light curves serve as a bank fromwhich wemay perform an inexpen-
sive, simple search to generate better constraints on ymin and ymax. However, to
do so, we need to define a metric that we may then minimize. Since our qualitative
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“best fit” is determined by a good match between the simulation and observation
in terms of intensity distribution and power spectrum, we define a simple metric in
Eq. 4.7 as:

m = max
(
(CDFO − CDFS)

2
)
+max(((PO − PS)/PO)

2). (4.7)

Here the subscriptsO andS correspond to observation and simulation, respectively.
The first term finds the maximum the absolute difference between the cumulative
distribution function of the two light curves. The second term finds the maximum
relative wavelet power mismatch between the two light curves.

With thismetric, we then perform a grid search and find the combination which
gives us the lowest possiblemetric value. The corresponding ymax and ymin are then
taken up as the ‘inferred’ final values.

4.4.6 X-ray: Results

Wenowapply our two-step updated parameter estimation scheme to theX-ray data.
We next showcase the results for each light curve and then present the results on
the energetics of these events.

Light curve inversions

On applying our two-step procedure described in §4.4.2, we obtain the “best fit”
parameters of the PSM simulations. In Fig. 4.17, we present the metric surface from
step–2 as a function of the swept range of ymax and ymin, where the metric value
is lower for the darker color. Note that we have displayed the metric in log scale.
The blue circle represents the originally pre-fixed ymax and ymin for step–1, while
the green star is the ymax and ymin solution inferred from step–2 parameter search.

Fig. 4.17 reveals a number of salient features about our inferred solution(s).
First, there is a whole diagonal of “good” solutions, showcasing the degeneracy
between ymax and ymin. Second, the pre-fixed ymax and ymin lie very close to the
diagonal ridge of good solutions, thereby also justifying our choice of the initial
guess for ymax and ymin. Third, the final good solutions are sometimes quite close
to the pre-fixed values, while sometimes they change by order of magnitude. The
final amplitudes, however, would depend on the median flux value. Therefore, the
constraint is strongly performed for the ratio of ymax and ymin. A strong global min-
imum is not seen for constraining ymax and ymin. However, the solutions we shall
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Figure 4.17: The variation of metric with ymax (x-axis) and ymin(y-axis). The two
parameters are presented here in code units (note the log scale), while the metric
is presented in a scale of log10. The blue circle shows the originally selected ymax

and ymin (as used by the iPSM), while the green star corresponds to be (ymax, ymin)
with the lowest metric value.

see next give rise to a good representation of the observed light curves. We now
present the inversion results for all the light curves obtained by integrating the sig-
nal between 1–2.3 keV energy band in Fig. 4.18– 4.20. For the sake of discussion,
we only focus on Fig. 4.18, while the results for the other light curves are similar.

In Fig. 4.18, we show the light curves (panel a), intensity distributions (panel b),
wavelet power spectrum (panel c), and cumulative distribution function (CDF; panel
d). The orange represents the observation and the black represents the PSM forward
model of the best-fit parameters. Note that the simulated light curve is uncertainty-
incorporated. The uncertainty bands in the power spectrum corresponding to 1-σ
standard deviation in time. The top four panels are for data recorded in 2019 and
the bottom four are for that in 2020. Note again that a statistically accurate sim-
ulation must capture the intensity distribution well. Similarly, such a simulation
must also capture the essential frequencies in the time series which have excess
power. These are represented by the histogram (and CDF) and the wavelet power
spectrum. The presence of peaks at similar frequencies in the power spectrum
gives us the scales of importance, though we emphasize that the exact amount
of power need not exactly match. The plots reveal a good correspondence be-
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tween the observed and simulated light curve, both inmatching the distribution and
wavelet power at different scales. Thus, the two-step inversion scheme with iPSM
successfully captures the necessary information from the presented observations.
We summarize the inversion parameters for all the six light curves in Table. 4.4.

Table 4.4:: Summary of the inferred parameters for the six light curves.

1.0 – 1.3 keV 1.0 – 2.3 keV 1.3 – 2.3 keV
Parameter

2019 2020 2019 2020 2019 2020
pf (events min−1) 27.89± 1.67 33.18± 1.87 28.00± 2.16 34.17± 1.97 25.42± 1.57 24.95± 5.15

τ (min) 10.56± 0.88 9.12± 0.73 11.80± 1.05 8.26± 0.67 9.29± 0.79 6.56± 0.56

α 2.00± 0.12 1.74± 0.15 1.87± 0.15 1.58± 0.12 1.94± 0.13 1.56± 0.13

ymax (W m−2) 8.14× 10−11 7.30× 10−11 1.26× 10−10 9.07× 10−11 7.71× 10−11 6.86× 10−11

ymin (W m−2) 2.03× 10−12 8.28× 10−13 2.12× 10−12 1.00× 10−12 1.12× 10−12 6.36× 10−13

We note that the flaring frequency pf ranges from 24 − 35 events per minute, and
the time scale τ ranges from ≈ 6− 12 minutes with a maximum uncertainty of the
order of a minute. For all the light curves, the inversion gives us power law slopes
of ≤ 2.0. Finally, ymax generally ranges from 7 × 10−11–1.26 × 10−10 W m−2, while
ymin ranges from 6 × 10−13–2 × 10−12 W m−2. Overplotting the typical energies in-
ferred from our analysis with the results from Vadawale et al. (2021a) in Fig. 4.21,
we clearly see that the events making up these light curves are much smaller than
the microflares observed by Vadawale et al. (2021a).

Energetics

We now have a train of events giving rise to each of the observed light curves. Our
goal is to study the energetics of these events. For this purpose, we first convert
the obtained intensities into fluxes and energies following Eq. 4.6. Since we would
be integrating only in a particular energy band, they would correspond to a “lower
bound” of energy. The energy estimates are better representatives of the energy
content of these events if larger energy bands are considered. Hence we consider
the energies in the widest 1–2.3 keV passband. We find that our energies typi-
cally range between 1021–2×1023 ergs for this passband, with α shallower than 2.0.
These events will thus correspond to the nanoflare or even picoflare energy range.

To understand the average radiative loss flux, we consider the average ampli-
tude of flare in a given time series (Eavg). Note that this is in code units, which
can be converted into real units of energies following Eq. 4.6. Inherently, we as-
sume that the corresponding energy obtained is emitted isotropically by the Sun.
To estimate the amount of energy emitted across the whole time series, we also
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need the frequency of occurrence of these events (pf ). Hence, for a given flaring
frequency of pf (events per second), the amount of energy radiated per unit time
would be pf · E. Thus, the radiative flux loss from the unit solar area (since we are
performing full-disk integration) would be

RL :=
pf4πR2

1AU · τ
A⊙,disk

Eavg (4.8)

The full set of radiative flux losses is presented in Table. 4.5. We find the radiative

Table 4.5:: Radiative losses in erg cm−2 s−1 for the 3 energy passbands and two
years.

Energy band (keV) 2019 2020
1.0-1.3 4.18± 0.65 ×103 3.02± 0.74 ×103
1.0-2.3 6.29± 1.37 ×103 4.39± 0.92 ×103
1.3-2.3 2.26± 0.43 ×103 1.82± 0.57 ×103

flux losses to be ≈ 5 × 103 erg cm−2 s−1 in the 1-2.3 keV energy band, while they
are ≈ 3.5 × 103 and ≈ 2 × 103 erg cm−2 s−1 in the 1–1.3 and 1.3–2.3 keV energy
bands, with errorbars on each term. Thus, the losses are typically of the order of
103 erg cm−2 s−1.

4.5 Summary, Discussion and Conclusion

QS coronal region provides a wealth of data to narrow down and understand the
underlying heating processes. Assuming the underlying heating mechanism to
be impulsive, coronal light curves may be approximated using empirical statisti-
cal models to infer physics-inspired parameters. To this end, we have developed
a DL inversion model called the iPSM using CNN and validated it using a separate
test set. We have applied this model to perform the inversion on coronal datasets
and infer the free parameters for (i). The three AIA pass-bands viz. 171 Å, 193 Å
and 211 Å, and (ii). The three energy bands of XSM, viz. 1–1.3 keV, 1.3–2.3 keV,
and 1–2.3 keV.

We find that the light curves inverted using the CNN and observed light curves
are statistically in excellent statistical agreement, considering the CDF and PDFs
(see Fig. 4.10, 4.11, and Figs. 4.19– 4.20). Note that we are not concerned with a
point-to-point match at each timestep between the simulation and the observation.
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A change in the seed of the random number generator is enough to shift the loca-
tion of individual events and their amplitudes in simulation. However, this does not
cause any changes in the statistical properties of the light curve, which is what we
are primarily interested in. TheGlobal wavelet power shows the simulations and ob-
servations to have peaks at similar frequencies, validating that the simulation and
observation both have enhanced power in similar frequencies. The quality of ap-
proximation may be understood by the Epistemic uncertainty of our CNN, obtained
by the application of Dropout to perturb the model.

4.5.1 EUV results

We find the distribution of all parameters to be similar for light curves from all three
EUV passbands. The flaring frequency lies within the range of 1 to 4 events per
minute, with a peak at ∼ 2.3 events per minute for all three passbands. Similarly,
the flaring duration has a range of values between 5 and 30 minutes. However,
unlike the flaring frequency, the peak of the distribution of flaring duration shows
temperature dependence, being highest (∼16 min) for the coolest 171 Å channel,
∼14 min for 193 AA and lowest (∼12 min) for the hottest 211 AA channel.

The power-law index α has a range of values between 1 and 8. The distribution
ofα peaks at 2.3 for all three passbands of AIA viz. 171, 193, and 211Å. This finding
strongly suggests that nanoflare heating is indeed a viable source of energy in the
quiet corona (see, e.g., Hudson 1991). We also find the fraction of light curves
giving α ≥ 2 progressively reduces from cooler to hotter passbands. We further
note that there are a significant number of pixels where α < 2. This is suggestive
that low-energy events may not be dominant everywhere. However, note that the
viability of these low-energy events also relies on the flaring frequency pf , requiring
a full analysis of the energetics.

Our finding further suggests that there is a change of dynamics for pixels with
α < 1.8 and α ≥ 1.8 (from Fig. 4.13). In the former case, pfτ is nearly constant,
while in the latter case, it reduces with increasing α. This may also be observed
in Fig. 4.14. Note that α = 2 corresponds nearly to Eavg = 0.08 and the right tail
of Eavg represents α < 2. Here, a definite increase of pf with decreasing Eavg is
seen, which is interpreted as excitation increasing with decreasing Eavg (and thus
increasing α). However, we also find that τ reduces with reducing Eavg. Thus, the
increase in damping counters that in excitation inα ≥ 2 regime, causing a reduction
in the ratio in Fig. 4.13. Thus, the increase in excitation is essentially nullified by the
increase in damping.
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We note that our inferred pf distribution peaks at ∼ 2 − 3 events per minute,
while Tajfirouze & Safari (2012) obtained a mean pf of ∼ 0.33 events per min. This
may be explained by the better temporal cadence and spatial resolution of our data,
whereby our simulation captures much smaller transient events. However, note
that our inferred pf corresponds to an average waiting time of ∼ 30 sec, which is
much smaller than the waiting times of ∼ 230 s suggested from simple geometric
arguments (Klimchuk 2015). magnetoac There is a discrepancy in the τd (decay
time) and α derived here with those obtained by Tajfirouze & Safari (2012). The
τd being about a factor of six smaller in our case (∼ 60 min in Tajfirouze & Safari
(2012) to ∼10 min in our case) and α peaking near 2.3 in our case, compared to
a mean α of 2.6 in Tajfirouze & Safari (2012). This discrepancy may be attributed
to the fact that the data used in this study are at much higher spatial and tempo-
ral resolution than Tajfirouze & Safari (2012). Therefore, we must have captured
smaller events with much shorter timescales (as also alluded to by Tajfirouze & Sa-
fari (2012)). Similarly, the discrepancy in power-law index α may be attributed to
the high spatial resolution data used in the present work. Moreover, in our simula-
tion, we are sampling flares within a larger energy range with larger ymax/ymin than
those by of Tajfirouze & Safari (2012)). However, note that our obtained cooling
time scales (∼ 600 sec) are indeed of the order of cooling time scales in the corona
obtained by Klimchuk (2015)(∼ 1000sec).

Next, we find that the pf decreases with Eavg (see the left panel in Fig. 4.14).
The decrease of pf with Eavg is interpreted as a decrease in peak energy released
per flare with increasing frequency. Thus, we can either have intermittent, high-
energy events or sustained low-energy events. This variation of pf with Eavg is sim-
ilar to the observation of the relation obtained between peak flare flux and waiting
times by Hudson (2020) (see also Sarkar et al. 2019). Furthermore, the inverse
relation between pf and Eavg , (or a direct relation between the waiting time and
succeeding nanoflare energy) was a necessary ingredient needed to reproduce ob-
served EM distribution with temperature in ARs by Cargill (2014). Since the rise
time is given as a fraction of the decay time in this setup, we do not distinguish
between pre-flaring and post-flaring times. Thus, this may point to the presence
of a reservoir of energy that may be exhausted by frequent, small-energy events or
intermittent, large-energy events. However, we emphasize that the change in pf is
tiny (2-3 events per min, as can be seen from Fig. 4.14) when compared to the total
time scale of these events (10-15 min across all passbands). Thus, we must take
this interpretation with caution.

The time scale τ is seen to increase with Eavg (see the right panel in Fig. 4.14).
This shows an increase in flare time scale corresponds to an increase in average
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flare energy. This weak correlation is similar to the weak correlation observed be-
tween peak flux and flare time scale by Veronig et al. (2002, see Fig. 3). However,
we may seek to explain this relation qualitatively as below:

For an iso-thermal, optically thin plasma, the observed intensity is directly pro-
portional to electron number density (O’Dwyer et al. 2010c), i.e DN ∝ n2

e. From
Cargill (1994), we find that:

τc ∝ ne : Conductive cooling dominated plasma (4.9)

and
τr ∝ n−1

e ;Radiative cooling dominated plasma (4.10)

where τc and τr are conductive and radiative cooling times, respectively.

Combining the equations of timescale and intensity, we obtain:

τr ∝
1√
DN

, τc ∝
√
DN, (4.11)

Thus, for a conduction cooling-dominated plasma, the timescale τ should in-
crease with the emitted intensity, while for a radiative cooling-dominated plasma,
we expect the opposite. Our results show a direct relation between τ and the peak
flare intensityEavg and qualitatively suggest that in such events, conduction losses
are dominant over radiative losses, assuming a constant flaring frequency. This is
similar to the results obtained by Rajhans et al. (2021); Gupta et al. (2018b); Subra-
manian et al. (2018) for tiny transient brightenings.

Finally, the flaring time scales are seen to be largest in the coolest passband
and decrease from the cooler to hotter passbands. This indicates the decreasing
dominance of conduction loss over the radiative loss (but the conduction loss still
dominates), as would be the case for cooling loops (see e.g., Klimchuk 2006b; Viall
& Klimchuk 2012; Tripathi et al. 2009a; Gupta et al. 2015). We emphasize that this
is true under the assumption of constant flaring frequency since only ∼ 2-3 events
are happening per minute, whereas our total (rise+fall) time in consideration ∼ 15
min.

4.5.2 X-ray results

In the X-ray regime, the flaring frequency is ≈ 24 − 35 events per minute. This flar-
ing frequency is 10× larger than those we found in the EUV observations (pf ≈ 2.5
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events per minute; see §. 4.3.5). These two results may be reconciled by noting
that Eavg defined in Eq.4.4, is ≈ 10−3 in the X-ray regime, while it is ≈ 10−2 in EUV.
This shows that an approximately 10× reduction in the flare amplitude has resulted
in an approximately 10× increase in flaring frequency (pf ). Thus, the X-ray and EUV
results are consistent in that the pf is found to reduce with increasing event ampli-
tude. These results strongly indicate the presence of an energy reservoir that may
be depleted by large events occurring infrequently or small events occurring more
frequently.

We find that the X-ray event timescale ranges from≈ 6−11minutes. In the EUV
regime, we saw that the event time scales reduce with increasing temperature, i.e.,
from≈ 16minutes in 171Å (log T ≈ 5.85) to≈ 12minutes in 211Å (log T ≈ 6.2) (see
§.4.5.1 above). Since the observations reported here are at a higher temperature,
the obtained results are consistent with those from EUV, though note that these
values reported corresponding to the mean values of a distribution.

We may also compare the properties of these unresolved X-ray events with
thoseof resolvedmicroflares.Sylwester et al. (2019), for example, studiedmicroflares
in the 1.2–15 keV energy range using data from SphinX (Sylwester et al. 2008), with
similar events studied by Vadawale et al. (2021b). They find the median tempera-
tures of log T ≈ 6.3, while the time scales range from ≤ 1 minute to ≈ 10 min-
utes. Thus, the timescales we obtain are typical of the order of, or even slightly
longer than those obtained by Sylwester et al. (2019) – though we emphasize that
timescales are consistent within the uncertainties.

Finally, we obtain α between 2.0 and 1.56 in the X-ray regime, which are far flat-
ter than those obtained in EUV (α ≥ 2, see §. 4.3.5). However, note that the median
α in EUV varies from 2.26 in 171 Å to 2.07 in the 211 Å passband. Consistent with
this trend, we also find the α from X-rays to be smaller. Moreover, from Table. 4.4,
we see that the α value reduces with increasing energy (from 1–1.3 keV to 1.3–
2.3 keV). However, we note that the increase is only in the mean value, but within
the error bars, they are consistent. On the whole, there appears to be a particular
flattening of α with the increasing temperature of plasma when the EUV and X-ray
observations are taken together. We emphasize, however, that the smaller α for
higher temperatures is intriguing, i.e., for a given range of amplitudes, a larger α
would have infrequent outlier intensities. However, a smaller α, as inferred here,
implies that these outlier events start to become the norm, implying that the typi-
cal amplitude of events is nearly constant. Moreover, Vadawale et al. (2021a) find
the power law slope to be larger than 2 for the microflare observations using the
same instrument and for the same time periods. This raises the question of a pos-
sible change in the underlying mechanism of heating from higher energies to lower
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energies, which reflects differences in the power law exponent.

We note that the obtained energy of the impulsive events in X-rays are typically
in the nanoflare/picoflare regime and vary in the range of 1021–2×1023 ergs. These
values are typical of the scale of thermal energy as measured by Sylwester et al.
(2010) for typical solar quiet times, thoughwe note that we report only a conversion
of luminosity to energy, and not the thermal energy itself. Considering a very small
range of energies the actual value of α may not even have a strong meaning. It
may simply suggest that the events of ≈ 1023 ergs are dominant over events with
energy≈ 1021 ergs. Therefore, it is imperative to not consider just the parameter α,
but also consider the radiative flux in the events to get a better estimate.

Due to the flux-calibrated data of XSM, we can estimate the radiative energy
loss from the quiet corona. We find the flux to be ≈ 103 erg cm−2 s−1 for the full
energy range of 1–2.3 keV. This flux is two orders of magnitude lower than the ra-
diative loss estimates in the quiet corona byWithbroe & Noyes (1977). Prima-facie,
it suggests that such sub-pixel impulsive events may not have enough energy to
maintain the quiet corona. However, we must note that the energy estimate pre-
sented here only provides a lower bound since the energy is radiated away in many
wavelengths. A better waywould be to estimate the “thermal energy” content of the
impulsive events, which is not possible in our case due to lack of spatial content,
i.e., a length measure along the line of sight.

There do exist some caveats in these set studies. It is important to empha-
size that the PSM is very well suited for explaining the observed light curves from
the quiet Sun region obtained at much higher temporal and spatial resolution than
was initially studied by Pauluhn & Solanki (2007). We note that although we have
improved the inference by quantifying the uncertainties, the PSM may further be de-
veloped by incorporating the plasma filling factor and effective area in the forward
model, as has also been suggested in the original paper (Pauluhn & Solanki 2007).
Note that in the PSM, the radiance distribution is considered to be the same as the
energy distribution. However, note that there may be a number of further smaller
events that may or may not produce detectable signatures in the intensity images.
It is also possible that many events produce signatures in one passband and not in
another. Therefore the distribution reported using the radiance is just a lower limit
of the total number of events. Hence, the incorporation of filling factors in the PSM
is an important next step in improving the model.

These exercises tell us that impulsive event trains can statistically explain QS
light curves – either from a single pixel or from full disc integration. Typically, these
events occur in the corona across a range of temperatures, and their properties

101



CHAPTER 4. QUIET SUN HEATING X DEEP LEARNING

also vary depending on the characteristic temperature of the plasma emitting them.
There is no reason not to expect an impulsively driven chromosphere, similar to an
impulsively driven corona. Thus, it would be interesting to apply our inversionmodel
to chromospheric observations (see also Jess et al. 2014), possibly using data from
IRIS or using chromospheric observations in Near-UltraViolet (NUV) from the Solar
Ultraviolet Imaging Telescope (SUIT; Tripathi et al. 2017; Ghosh et al. 2016), on-
board the Aditya-L1 mission (Seetha & Megala 2017; Tripathi et al. 2022) of Indian
Space Research Organization (ISRO).
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I. 1-2.3 keV from October 2019
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II. 1-2.3 keV from February 2020

Figure 4.18: Comparison of the observed light curve from XSM (orange), and the
PSM forwardmodel of best-fit parameters inferred fromour inversion code (black) in
1-2.3 keV energy band from 2019 (subfigure: I) and 2020 (subfigure: II). Each sub-
figure has four panels depicting: Panel (a): Observed and simulated light curves;
Panel (b): Distribution of observed and simulated light curve intensities; Panel (c):
Global Morlét power for observation and simulations, with the uncertainties pre-
sented in orange and blue bands; Panel (d): Comparison of simulation and obser-
vation intensity CDF. The inset reports the inferred parameter set for the respective
data.
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Figure 4.19: Same as Fig. 4.18, but for 1.3–2.3 keV band.
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Figure 4.20: Same as Fig. 4.18, but for 1.3–2.3 keV band for the segment from year
2020.
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Figure 4.21: Frequency distribution of impulsive events inferred from the observa-
tions in the 2019 year (pink) and 2020 (cyan). The scatter is the frequency distribu-
tion of event energies from the model. The error bars on inferred parameters are
obtained by propagating the Monte Carlo uncertainties. The black scatter shows
the inferred frequency distribution from Vadawale et al. (2021a), while the black
dot-dashed line corresponds to α = 2.0.
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Chapter 5

Unifying solar wind origin and coronal
heating

The solar coronal heating in quiet Sun (QS) and coronal holes (CH), in-
cluding solar wind formation, are intimately tied by magnetic field dy-
namics. Thus, a detailed comparative study of these regions is needed
to understand the underlying physical processes. In this work, we inves-
tigate the similarities and differences between CHs and QS in the chro-
mosphere using theMg II h & k, C II lines, and transition region using Si IV
line for regions with identical absolute magnetic flux density (|B|). This
thesis chapter is an adapted from a set of two papers that appeared in
the literature as Properties of the C II1334 Å Line in Coronal Hole and
Quiet Sun as Observed by IRIS (DOI: 10.3847/1538-4357/ac2575), and
On the Formation of Solar Wind and Switchbacks, and Quiet Sun Heat-
ing (DOI:10.3847/1538-4357/ac3d88).

Over the course of the last few chapters, we have seen how the solar corona is
anomalously hot when compared to the photosphere. Furthermore, we have also
seen how different morphological structures exist in the corona, which must be
studied to understand the heating of this corona. These different morphological
structures – i.e., CH, QS, and AR – are also tied intimately with the outflow coming
from the Sun, i.e., the solar wind.

The CHs appear dark in the corona, while in the lower atmosphere, they do not
show any such differentiation. Thus, on average, the CHs have lower temperatures
than either QS or AR. However, the CHs are also strongly associated with solar wind
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streams. Is there a connection?

It is interesting to note that while CHs are clearly distinguishable fromQS in the
EUV and X-ray images, these two regions appear extremely similar at lower heights
viz the chromosphere and photosphere (see, e.g., Stucki et al. 2000, 1999; Kayshap
et al. 2018; Tripathi et al. 2021a). The He I 10830 Å is a chromospheric absorption
line, which, however, shows excess intensity (and thus lower absorption) in CHs
(Harvey & Sheeley 1977; Kahler et al. 1983). The He I 584 Å is an emission line that
shows lower intensity (Jordan et al. 2001) in CHs, while showing excess blueshift
and line widths in the CHs when compared to QS (Peter 1999). However, these
differences may be attributed to the sensitivity of these lines to coronal radiation,
reflecting conditions in the corona. Furthermore, at 17 GHz in the microwave, CHs
are found to be brighter than QS (Gopalswamy et al. 1999), while this difference is
not observed in radio wavelengths at 1.2 mm (Brajša et al. 2018). Thus, a gross
differentiation of a given region in QS or CH is markedly seen predominantly in the
coronal observations and not so lower in the atmosphere.

We have seen earlier in §. 1.2.2 that Hassler et al. (1999) found a relation
between the network regions and blueshifts of Ne VIII, with more blueshifts in
CHs. Similarly, comprehensive studies of CHs and QS were undertaken by (Stucki
et al. 1999, 2000) using spectral lines sensitive to a range of temperatures from
≈ 8 × 103 K to ≈ 1.4 × 106 K. While CHs showed a clear deficit in intensity, excess
blueshift, and excess line width with respect to QS for spectral lines forming at a
temperature higher than ≈ 4 × 105 K, at chromospheric temperatures, the differ-
ences were negligible and within the measurement error. Similarly, Xia et al. (2004)
studied the relationship between Doppler shifts of C II, H I Lyβ, and O VI in CHs,
and found a direct relationship between the Doppler shifts of O VI with that of C II
and H I Lyβ. These correlated shifts led Xia et al. (2004) to conclude that they
are signatures of solar wind in the chromosphere. However, note that the associ-
ated uncertainties in the velocity scatter obtained by Xia et al. (2004) were large.
Moreover, while the average chromospheric velocities in bins of the O VI veloci-
ties were studied, the systematic associations between red and blue shifted pixels,
separately, for these lines, was not performed by Xia et al. (2004).

The correspondence between network region and outflows in the CHs, using
Ne VIII line, demonstrated by Hassler et al. (1999) was further investigated by Tu
et al. (2005) by mapping the formation heights of Si II, C IV and Ne VIII in a CH.
On further detailed investigation, Tu et al. (2005) showed a clear relation between
the Ne VIII blueshifts and the underlying magnetic field configuration, obtained us-
ing the potential field extrapolation of the photospheric magnetic field. Thus, Tu
et al. (2005) suggested modulation of the solar wind velocities due to the underly-
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ing magnetic field configuration.

More recently, Kayshap et al. (2018) investigated the intensity differences be-
tween CH and QS in the Mg II k line, observed by the Interface Region Imaging
Spectrometer (IRIS, De Pontieu et al. 2014). They find a clear deficit of intensity in
CHs over QS for regions with similar absolute photospheric magnetic flux density
(|B|) and with larger differences for larger |B|. A similar analysis for the intensity,
velocity, and non-thermal widths for Si IV was performed by Tripathi et al. (2021a)
(henceforth referred to as Paper I). Similar to the results of Kayshap et al. (2018),
intensity deficit in CHs over QS for regions with similar |B| was observed. More-
over, CHs (QS) were more blueshifted (redshifted) for identical |B|. However, no
significant difference was observed in the non-thermal width between CH and QS.
The excess CH blueshifts were interpreted to be signatures of the nascent solar
wind at Si IV formation heights in Paper I. Thus, while a clear signal of solar wind
was reported in the hotter Ne VIII line by Tu et al. (2005), the signatures are already
present in the upper TR line Si IV, if the underlying photospheric magnetic flux den-
sity distribution is taken into account. Furthermore, since the regions with identical
|B| were compared, the deficit in intensity in CHs over QS would mean energy to
be either used to accelerate the solar wind or heat up the corona. Thus, a unified
picture of solar wind formation & coronal heating was presented in Paper I.

Thus, we come to ask one of this thesis’s most important science questions:
What is/are the underlying mechanism(s) of heating up of the solar corona and
subsequent generation of the solar wind? ([Q3] in §. 1.3).

The differentiation between CH and QS starts becoming statistical in nature in
the lower solar atmosphere. Thus, we first study the Mg II h & k line dynamics and
the C II line dynamics in CH and QS. We then go ahead and explore the correlations
between the Mg II, C II, and Si IV lines in CH and QS, with the intention of explaining
the observations. The remainder of this chapter is structured as follows: In §5.1,
we describe our observations, with feature extraction for the Mg II line in §5.1.1,
and for the C II line in §5.1.2. In §5.2, and §5.3, we present results of the Mg II lines
and C II line on one dataset, while we present the results across all the datasets in
§5.4 and §5.5 for the two lines. We then recapitulate the results for the Si IV line
from Paper I across the extended dataset in this work, in §5.6. In §5.7, we present
the correlations between the velocities of different lines, while we summarize all of
our results in §5.8. Finally, we provide an interpretation in the context of the origin
of the solar wind, switchbacks (Bale et al. 2019), and QS coronal heating §5.9.

109



CHAPTER 5. SOLAR WIND X CORONAL HEATING

5.1 Data

In this study, we use the observations recorded by IRIS, AIA, and HMI. We consider
spectra from all three windows of IRIS, while we use the SJI data centered around
1330 Å and 2796 Å for co-alignment purposes. From AIA, we consider the 193 Å
images to distinguish between CHs and QS and the 1600 Å images to co-align the
IRIS, AIA, and HMI observations. We obtain the information on the photospheric
absolute magnetic flux density (i.e. |B|) from the line-of-sight (LOS) magnetograms
obtained with HMI. In the datasets we used, IRIS provides photometric context im-
ages in NUV and FUV with a pixel size of ≈0.16′′ and at a cadence of ≈63s. The
spectra have a pixel size of ≈0.16′′ along the slit and sample at ≈.33′′ across the
field of view (FOV). The spectral pixel size in these rasters is ≈25.9 mÅ, while the
time cadence between successive slit positions is ≈30 s. The AIA images used
are taken with a pixel size of ≈0.6′′, with the EUV images a time cadence of ≈ 12 s,
while the Ultraviolet images are taken at ≈ 24 s cadence. HMI obtains the BLOS

magnetograms at ≈ 45 s cadence with a pixel size of 0.5′′.

For our study, we analyzed five sets of observations recorded by IRIS in spec-
troscopic mode. The main criteria used to select these observations are that the
raster must include CH and QS within the same FOV and that they must be taken
within latitude and longitude of ±60◦. The IRIS observation details are given in Ta-
ble. 5.1. Out of these, three of the observations viz. DS1, DS2, and DS5 were also
studied in Paper I to characterize the similarities and differences in QS and CHs in
TR using Si IV line. We use corresponding coordinated AIA data cubes with cutouts
from the full disk data used from HMI.

TheMg II h & k lines form near 2803.53 Å and 2796.35 Å, respectively, while the
C II and Si IV lines form near 1334.53 Å and 1393.755 Å, respectively. TheMg II and
C II lines form in an optically thick chromosphere under non-local thermodynamic
equilibrium conditions (see, for e.g. Leenaarts et al. 2013; Rathore et al. 2015b).

Table 5.1:: Details of the IRIS rasters used in this study. Note that average µ is
mentioned for each Field of View.

Dataset name Time range (Xcen,Ycen) Raster FOV µ

DS1 2014-07-24 11:10:28 – 14:40:53 (128′′,-180′′) (141′′,174′′) 0.97
DS2 2014-07-26 00:10:28 – 03:40:53 (469′′,-167′′) (141′′,174′′) 0.85
DS3 2014-08-02 23:55:28 – 03:25:53 +1d (332′′,-152′′) (141′′,174′′) 0.92
DS4 2015-04-26 11:39:31 – 15:09:56 (-288′′,45′′) (141′′,174′′) 0.95
DS5 2015-10-14 11:07:33 – 14:37:58 (215′′,-165′′) (141′′,174′′) 0.97
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Thus, these lines show extremely complex features and have non-trivial associ-
ations with local plasma properties. They have been explored in detail in Rathore
et al. (2015b); Leenaarts et al. (2013). For all practical purposes, the Si IV line, form-
ing in QS TR, can be considered to be formed in optically thin conditions (Tripathi
et al. 2020; Gontikakis & Vial 2018), and its properties in QS and CH are studied in
detail in Paper I.

Fig 5.1.a displays a portion of the solar disk obtained from AIA 193 Å full disk
image. The over-plotted white box represents the IRIS raster FOV. Panels b and
c display the pseudo-rasters of AIA 193 Å and HMI LOS magnetogram, while the
unsigned magnetic flux density is shown in panel d. We apply the segmentation
algorithm from Upendran et al. (2020) to the AIA 193 Å pseudo-rasters to obtain a
demarcation of CHs from QS. This algorithm has also been explained in §. 3.2.4.
In Fig. 5.1.b & c, the green contours demarcate CH from QS. We see that the HMI
pseudo-raster does not show any visual difference between CHs and QS, similar to
the results obtained by Tripathi et al. (2021a); Kayshap et al. (2018).

5.1.1 Feature extraction: Mg II

The Mg II lines offer crucial information on the plasma conditions in the formation
region, encoded into the line intensities and Doppler shifts of the line core (k3 & h3)
and the peaks (k2v, k2r, h2v & h2r). For a detailed analysis and discussion of these
lines, see Leenaarts et al. (2013); Leenaarts et al. (2013); Pereira et al. (2013).

We first extract the positions and intensities of these different spectral line
features. For this purpose, we develop a peak finding algorithm based on Leenaarts
et al. (2013); Pereira et al. (2013) that locates the zero-crossing of dI/dλ within a
window of± 40 km s−1 from the reference wavelength (taken to be 2796.350 Å and
2803.529 Å for the k and h lines respectively, see Pereira et al. 2013).

The line core is identified to be the location with minimum intensity at the zero
crossing. If the procedure is unable to locate such a minimum, e.g., in case of
single-peaked or noisy profiles, we assign a default velocity of 5 km s−1 following
Leenaarts et al. (2013), since the remaining procedure rests on the identification of
line core. Note, however, that the Mg II spectral profiles in this study, i.e., for QS and
CHs, are predominantly double-peaked, as also noted by Leenaarts et al. (2013).

The two peaks closest to the line core on either side are the k2 (h2) peaks.
Since the line core and peaks form at the local extrema of the line profiles (as a
function of wavelength), they may be approximated to be a parabola close to the
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Figure 5.1: AIA 193 Å context image (Panel a). The over-plotted white box corre-
sponds to the IRIS raster FOV. The pseudo-rasters obtained from 193 Å images and
HMI LOSmagnetograms corresponding to the IRIS raster for DS4 are shown in pan-
els b & c, respectively, while |B| is displayed in panel d. The green contours in panels
b, c,and d demarcate the CH and QS, obtained from the segmentation algorithm.
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peak value. Thus, we may fit a parabola near the maximum/minimum and obtain a
better estimate of the real extremum. This is called sub-pixel centroiding (similar
to Teague & Foreman-Mackey 2018). Thus, the velocities and intensities for the
core and peaks are then determined by fitting a parabola to the points near the
feature extremum. Profiles that containmissing values of−200 are discarded. This
procedure provides us with the intensities and Doppler shifts of the peaks & core of
Mg II h & k lines. The line peak Doppler shifts are determined by taking the signed
average of shifts of the blue and red peak (Leenaarts et al. 2013).
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Figure 5.2: Mg II spectrum at a random QS location of DS4. The Mg II line features,
along with their locations, are labeled as k2v or h2v (blue), k3 or h3 (black), and k2r
or h2r (red).

Fig. 5.2 displays a spectrum obtained at a random pixel in DS4 centered at the
twoMg II lines. The two lines and their associated features are labeled. The core &
peaks have been identified using the algorithm presented above. The black vertical
line denotes the line core. The red (blue) vertical line corresponds to the line’s red
(blue) peak. This convention is followed for both the h and the k lines.

5.1.2 Feature extraction: C II

For extracting the different properties from the C II line, we first smooth the spectral
profiles following Rathore et al. (2015a). This smoothing marginally increases the
number of converged fits, especially in regions with low intensity. The smoothing
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Figure 5.3: An example spectrum centered at the two C II lines obtained at a ran-
dom QS location of DS4. The step plot shows the original spectrum, while the
black solid line is the smoothed locally-averaged spectrum (as described through
Eq. 5.1.2). The two C II lines are marked, with the dot-dashed blue lines depicting
the line center and the red solid lines depicting ±σ, both obtained from a single
Gaussian fit to each line.

filter taken from Rathore et al. (2015a) is:

Sfilt =

σ2

σ2
s
ms +

(
1− σ2

σ2
s

)
s σ2

s ≥ σ2

ms σ2
s < σ2

where s is the original signal, Sfilt is the filtered signal in a 3×3 window, where ms

and σ2
s are the localmeans and variances, while σ2 is average of local variances. For

regions with a strong signal, the Sfilt tends to the local mean ms, while the weaker
regions are smoothed out. This operation is performed in slices of the 2-D spectro-
gram [coordinate along the slit, wavelength]. We perform a single Gaussian fit on
the obtained spectra with a constant continuum to the C II line profiles following
Rathore et al. (2015b). This scheme, while having the disadvantage of being influ-
enced by the whole line profile in providing line core information, was our best bet
due to the relatively large noise in using a peak-finding algorithm.

The fit is performed within a spectral window of±50 km s−1 with respect to the
reference wavelength of 1334.532 Å, as taken from Rathore & Carlsson (2015); Kelly
& Palumbo (1973). From this fitting, we obtain the line core intensity, Doppler shift
(i.e., the centroid), and width. The smoothed spectrum (solid) and the fitted line
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centroid, σ, are depicted in Fig. 5.3. As mentioned earlier, the line core intensity is
a proxy for the strength of the source function, as shown in Rathore et al. (2015b).
Similarly, the Doppler shift is a measure of the plasma velocity at the formation
height. The line width, however, is a function of the line formation temperature and
opacity broadening factor, as shown in Rathore et al. (2015b). Double-peaked pro-
files are formed due to a local maximum in the source function, while line profiles
become asymmetric due to the presence of velocity gradients in the chromosphere.
For further information on the formation of C II lines and their general properties,
see Rathore et al. (2015b,a); Avrett et al. (2013).

We also estimate the third and fourth moments, namely the skew and kurto-
sis, respectively, of the spectral profiles following Jeffrey et al. (2016). These are
computed since the observed spectral profiles are known to have marked depar-
tures from a Gaussian profile (Rathore et al. 2015a). The skew and kurtosis for
a perfectly Gaussian profile are expected to be 0 and 3, respectively. Hence any
departures would indicate a significant difference from a Gaussian profile.

The skew (S) and the excess kurtosis (K) are defined as:

S =
1

σ3

∫
λ
I(λ) (λ− λD)

3dλ∫
λ
I(λ) dλ

, (5.1)

K =
1

σ4

∫
λ
I(λ) (λ− λD)

4dλ∫
λ
I(λ) dλ

− 3.0, (5.2)

where λD is the centroid estimated from the Gaussian fits and the integral is per-
formed over the range±50 km/s of our spectral window in wavelengths, around the
reference wavelength. The σ2 is the second moment of the line given by:

σ2 =

∫
λ
I(λ) (λ− λD)

2dλ∫
λ
I(λ) dλ

. (5.3)

Note that the moments are computed for the Gaussian fit to the line. For the spec-
tral line, the continuum is subtracted, and then the moments are computed, follow-
ing Jeffrey et al. (2016)

We shall first present the analysis and results obtained from one dataset (DS4)
for Mg II and C II lines in §5.2 and §5.3. In the end, we average the results obtained
for all five data sets in §5.4 and §5.5 for the two lines. For the Si IV line, we present
results obtained from the extended dataset based on the analysis performed in
Paper I in §5.6.

Following the procedure outlined in Paper I, to improve the signal-to-noise ratio
(SNR) and statistics, we consider the derived quantities in the bins of |B| and report
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the average values in these bins. We use a constant |B| bin size of 0.1 in log space to
account for the fewer pixels at high |B|. Note that the LOS |B| and Doppler shifts are
converted to the radial field and flowsby dividingwithµ (the heliocentric coordinate,
see Thompson 2006) of the respective pixel. Furthermore, the errors reported in all
the plots are the standard errors on the mean. The standard error is defined as
σ/
√
N , where σ is the standard deviation for the samples present in the bin, and

N is the number of samples. Note that while we are interested in and report the
variation of mean value in each bin, we present the distribution of samples in each
bin with 1 and 90 percentile bounds in the §. 5.10.

5.2 Results from the analysis of theMg II: Single dataset

We now investigate the dependence of the following features on |B| through scatter
plots: 1) core & peak intensities of the two lines, 2) intensity ratios of the two peaks,
3) line core velocities, and 4) average peak velocities. Note that we consider 10 G
as the noise floor of |B| (Yeo et al. 2014; Couvidat et al. 2016).

5.2.1 Intensities

First, we consider the intensities obtained from the two Mg II lines. We have six
intensity measurements: four from the peaks and two from the cores of h & k lines.
In Fig. 5.4, we display the intensity maps obtained in these features for DS4. The
over-plotted blue contours demarcate the QS and CH. We see no visible difference
between CH and QS in any of the features of theMg II line. However, a clear relation
is seen with the photospheric magnetic flux density in Fig. 5.1.c, inline with the
results of Kayshap et al. (2018) for Mg II k line.

In Fig. 5.5, we plot the intensities of different Mg II h& k features in bins of |B|.
In the plots, black (orange) data points represent CH (QS), with the k (h) line features
in the top (bottom) row. We see that the intensity increases with |B| for both CH and
QS for all the line features. Furthermore, the QS shows excess intensity over CH for
|B| ≥30 Mx cm−2. However, there is a mild difference in the intensities already at
10 G for the k line. We further note that the difference in intensities between QS and
CH increases with increasing |B|, with an apparent saturation at higher |B|. These
results are in agreement with those reported by Kayshap et al. (2018).

Another key inference from Fig. 5.5 is the larger intensities of the blue peaks
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Figure 5.4: Intensity maps obtained in Mg II k (top row) and h (bottom row) line
features from DS4. The blue contours represent the CH-QS boundary, as shown in
panel Fig. 5.1.b.

(k2v and h2v) over the red peaks (k2r and h2r; see panels b, c, e and f). Note that
the peak ratio (Iv-Ir)/(Iv+Ir) is a proxy for the average chromospheric velocity, as
has been suggested by Leenaarts et al. (2013). A positive peak ratio corresponds
to down-flowing plasma in the atmosphere, while a negative ratio corresponds to
up-flowing plasma. A preferentially larger blueward or redward peak arises due to
increased absorption on the side of the smaller peak (see Leenaarts et al. 2013, for
details). The enhanced intensities in the blue peaks over red peaks suggest that
the chromosphere is more redshifted on an average, resulting in increased redward
absorption at the height corresponding to Mg II formation. Note that unless stated
otherwise, redshift means plasma moving toward the Sun, and blueshift means
plasma moving away from the Sun.

In the following, we consider pixels with only positive and negative ratios sep-
arately and the variation of the ratio with |B|. This would consider only pixels with
downflows (or upflows) as a function of |B|. Fig. 5.6 plots positive (panel a & c)
and negative ratios (panels b & d) for k2 and h2 line features. From the plots, we
find that the peak ratios vary between 0.1 and 0.2, which is in a sufficiently linear
regime of the scatter between peak ratio and average vz (as may be seen in Fig. 8.e
and f of Leenaarts et al. 2013). Thus, we may consider the peak ratio as a proxy
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Figure 5.5: Variation of intensities in Mg II k (top row) and h (bottom row) line fea-
tures with |B|. The orange color indicates QS, and the black indicates CH. Note that
the standard errors in |B| have also been plotted in this figure and all subsequent
figures, but they are too small to be seen.

for the averagemiddle chromospheric velocities in CH and QS. The plots show that
the peak ratio becomes increasingly positive or negative, rising with |B| till 50 Mx
cm−2 and saturating thereafter. Also, note that the positive and negative peak ra-
tios are larger in CHs than in QS for identical |B|. This intriguing finding is indicative
of larger downflows as well as upflows in CH over QS for the regions with identical
|B|.

5.2.2 Doppler Shifts

To further explore and understand the chromospheric velocities, we now consider
the velocities derived from Doppler shifts, which have a tight correlation with local
plasma velocity at the height of formation (Leenaarts et al. 2013). Fig. 5.7 displays
the velocity maps obtained for k3 (panel a), k2 (panel b), h3 (panel c), and h2 (panel
d). Note that while the core velocities are the straightforward shifts from the refer-
ence wavelength, the peak velocities are a signed addition of the peak shifts from
the reference wavelength. The red contours demarcate CH from QS. The velocity
maps for both k and h lines reveal that, on average, the chromosphere is redshifted
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Figure 5.6: The peak ratios as a function of |B| for the k (top row) and h (bottom
row) lines. The positive ratios (downflowing plasma) are depicted in panels a & c,
while the negative ratios (upflowing plasma) are depicted in panels b & d. Note the
absolute values of the ratio increase along the y-axis for all the plots.

in both QS and CH., as observed in Mg II lines. Moreover, there are no conspicuous
differences between CH and QS in the Doppler maps obtained in k3/h3 as well as
k2/h2.

In Fig. 5.8, we plot the variation of velocities obtained in k3 (top row) and h3
(bottom row) with |B|. Following Paper I and Paper II, we analyze this data in two
ways. On the one hand, we consider the signed average velocities in every |B| bin
and plot the variation with |B| (panels a & d). On the other hand, for each bin of |B|,
we consider the redshifted and blueshifted pixels separately and plot the variation
of velocities with |B| (panels b & e for upflows and panel c & f for downflows). While
the former provides us with the average velocities, the latter gives us a systematic
variation of downflows and upflows with increasing |B| in CH and QS. This is akin
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Figure 5.7: Velocity maps obtained in Mg II k3 (a), k2 (b), h3 (c) and h2 (d) from
DS4. The red contour shows the CH-QS boundary.

to the systematic variations seen in Fig. 5.6. Such an exercise can tell us if the
dynamics of the magnetic field cause any preferential effect on the redshifts and
blueshifts.

Figs. 5.8.a & d clearly show that, on average, the chromosphere is redshifted
in both QS and CH, similar to what is inferred from the maps shown in Fig. 5.7. This
result is consistent with the known observations (see e.g., Stucki et al. 2000, 1999;
Avrett et al. 2013, and references therein). Moreover, CHs show a larger redshift
than QS for |B|≤30 Mx cm−2, beyond which there are no differences in the veloci-
ties. At |B| ≥ 80 Mx cm−2, there is some hint for the CHs to show a larger redshift.
However, note that the average velocities are quite small in both regions.

When we consider the blue/red-shifted pixels separately, both in CH and QS,
we find a definite increase in the upflow (see Fig. 5.8.b & e) and downflows (see
Fig. 5.8.c & f) with increasing |B|. Moreover, the magnitudes of upflows and down-
flows are larger in CHs than in QS for the regions with identical |B|. Such a trend
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Figure 5.8: Mg II k3 and h3 velocity variation with |B|. Panels a and d show the
variation of signed average velocities in k3, and h3 binned in |B|. Similarly, panels
b and e show the variation of only blueshifted pixels, while panels c and f show the
variation of only redshifted pixels. The black (orange) scatter corresponds to CHs
(QS).
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Figure 5.9: Same as Fig. 5.8 but for k2 and h2.

is consistent with the inference made using the ratios of the two peaks shown in
Fig. 5.6. Note that the magnitude of the downflows in QS and CH is much larger
than that of the upflows, explaining the predominant downflows. Finally, the veloc-
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ity differences between CHs and QS increase with increasing |B|, with an apparent
saturation of velocities for |B| ≥ 60 Mx cm−2.

To investigate if these variations are also seen at the average formation height
of k2 and h2, we perform the same analysis with the average velocity obtained from
the k2 and h2 peaks and display the results in Fig. 5.9. The plots (panels a & d) re-
veal that the average velocities obtained at k2/h2 peaks are much smaller than the
core velocities. The CHs show excess redshifts than QS for regions with |B| ≤30 G,
beyond which the difference in velocities cease to exist. Moreover, the velocities in
both CHs and QS increase with |B| till 30 Mx cm−2 and saturate thereafter.

We further note that CHs show excess upflows (b & e) as well as downflows (c
& f of Fig. 5.9) over QS for regions with identical |B|. Both upflows and downflows in
CHs show a monotonic increase with increasing |B| till about 60 Mx cm−2 and sat-
urate thereafter. For QS, however, variation in upflows is very tiny, while downflows
show an increase with increasing |B| that also saturates beyond≈60Mx cm−2. The
velocities obtained from the peaks largely follow the velocities obtained using the
core of the line, with the former being smaller than the latter.

5.3 Results from the analysis of the C II: Single dataset

We shall now investigate the dependence of intensity, velocity, line width, skew, and
kurtosis of the C II line on |B|.

5.3.1 Intensity, velocity and line width

In Fig. 5.10, we display the intensity, velocity, and line width across the full FOV of
DS4 for the C II line. Panel. a, b, and c display the intensity, velocity, and line width
map, respectively. The over-plotted green contours are the same as those plotted in
Fig. 5.1.b. Note that the intensitymap and all subsequentmaps show awhite space
at the bottom of the raster that corresponds to missing data. There is no visual dif-
ference between the CH and QS in Fig. 5.10, like the differences seen in the coronal
image of Fig. 5.1. From the intensity maps shown in Fig. 5.10.a, and the photo-
spheric magnetic field maps shown in Fig. 5.1.c, we find a clear correspondence
between the |B| and intensities. Furthermore, there is a clear correspondence be-
tween the C II and Mg II intensities, though the C II line intensity structure appears
to be more diffuse. In Fig. 5.11.a, we plot the variation of intensities as a function
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of |B|. We find that for both CHs and QS, the intensities of the C II line increase with
increasing |B| till about 50Mx cm−2 and show a reduced rise thereafter in CHs. The
intensities in the QS are larger than those in CH for the regions with identical |B| for
larger flux densities. We further note that with increasing |B|, the difference in inten-
sities increases slightly. This is similar to results from the Mg II lines from § �5.2,
the findings of Kayshap et al. (2018) for Mg II lines and Tripathi et al. (2021b) for
Si IV line.

The Doppler velocity map in C II 1334 Å is shown in Fig. 5.10.b, with the green
contours demarcating CH and QS. The velocity maps shown in panel a reveal that
both the C II line is predominantly red shifted in CH as well as QS, similar to the
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Figure 5.10: Intensity, velocity and line width map of C II 1334 Å for DS4 is shown
in panel a, b, and c respectively. The green contours show the boundary between
the CH and QS.
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and QS (orange), as computed in the C II 1334 Å line for DS4 is shown in panel a, b,
and c respectively.
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Mg II line. Similar to the intensities, we find no visual difference in the Doppler shift
in the CH and QS. Black (orange) curves in panel b denote CH(QS).

Similar to the intensities, we study the Doppler velocity in QS and CH as a func-
tion of |B|. Similar to the analysis in §. 5.2, we analyze the dependence of the aver-
age shift, redshifts, and blueshifts individually on |B|.

20 40 60
|B| (Mx cm 2)

3.4
3.2
3.0
2.8
2.6
2.4
2.2
2.0

Ve
lo

cit
y 

(k
m

/s
)

a 1334: Only Upflow

QS
CH

20 40 60
|B| (Mx cm 2)

3.5

4.0

4.5

5.0

5.5

6.0

Ve
lo

cit
y 

(k
m

/s
)

b 1334: Only Downflow
QS
CH

Figure 5.12: Doppler shift as a function of |B| for DS4. Panel a shows the variation
of velocities obtained for only blue-shifted pixels, while panel b shows the variation
of only red-shifted pixels.

In Fig. 5.11.b, we display the variation of signed average velocities obtained
within bins of |B|. This reveals that, on average, both QS and CH are red-shifted
in the chromosphere, and this velocity increases with |B|. We then consider the
blueshifted and redshifted pixels separately in Fig. 5.12. The blue shifted pixels in
Fig. 5.12.a show higher velocities in CHs than QS, where the CH blueshift increases
with |B|. However, the QS blueshift appears independent of |B| for QS. Finally, when
considering only the red-shifted pixels (see Fig. 5.12.b), we find that redshifts in-
crease with |B|. Furthermore, the CHs have excess redshifts when compared to
QS. We further note that the magnitude of the downflows is much larger than that
of the upflows in both CHs and QS, which explains the predominant downflows in
the chromosphere.

We next study the total line width obtained from the Gaussian fit. Note that the
line width (see e.g. Rathore et al. 2015b) is defined as:

WFWHM = 2σ
√

2 ln(2) (5.4)

where WFWHM is the line width, and σ is the standard deviation obtained from the
Gaussian fits to the spectral line.
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The line width map obtained for DS4 is shown in Fig. 5.10.c, with the green
contours demarcating the CH and QS. Similar to the intensities and Doppler shifts,
we do not see any conspicuous difference between the CH and QS.

In Fig. 5.11.c, we plot the line widths as a function of |B|. Note that the bin size
of the |B| is the same as those used for intensity and Doppler shift. The line width
increases rapidly with increasing |B|. Beyond 30–40Mx cm−2, for CH, the width still
increases, albeit slowly. However, QS shows saturation beyond 40 Mx cm−2 and a
slight reduction thereafter.

5.3.2 Skew and Kurtosis
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Figure 5.13: Skew (panel a) and kurtosis (panel b) maps for C II 1334 Å line ob-
tained for DS4. The red contours depict the boundary between CH and QS.

Finally, we study the skew and kurtosis for the C II line using Eqn. 5.1 & 5.2.
Fig. 5.13.a (b) displays the skew (kurtosis) maps. The skew maps show a good
correspondence with that of the magnetic field in Fig. 5.1. This structure, however,
is far more prominent as a deficit of kurtosis in Fig. 5.13.c.

In Fig. 5.14, we plot the variation of skew (panels a–c) and kurtosis (panels b–
d) with |B|. In the plots, the skew and kurtosis obtained for the lines are shown as a
scatter with dots, while the filled star bands correspond to the moments computed
on the single Gaussian fit, with the bands and errors representing one sigma stan-
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Figure 5.14: Skew (panels a–c) and kurtosis (panel d–f) variation with |B| for
1334 Å for DS4. The average quantities are shown in panels a and d, while the
average for pixels with blueshifts (redshifts) alone are shown in panels b and e (c
and f). The scatter plot with dots shows themoments for the spectral profiles, while
the filled star plots are computed for the single Gaussian fits over the same wave-
length range. Note that the y-axis has been broken to show clearly the variation of
moments with the |B|.

dard error. Theoretically, a Gaussian’s skew and excess kurtosis are zero. However,
this need not be the case for a Gaussian profile sampled at specific wavelength
locations. Hence, to get a handle on the significance of the computed profile mo-
ments, we also compute the moments for the Gaussian fit as a benchmark. The
deviations of obtained moments of the Gaussian profile from its theoretical values
quantify the effects of a discrete wavelength grid. To make these clearer, we have
split the plots for themoments obtained fromGaussian fits and those directly com-
puted from the spectral profiles themselves. The plots reveal that the Gaussian fit
and spectral line have significantly different moments. The spectral profiles are
negatively skewed with respect to the Gaussian fits (Fig. 5.14.a), indicating a gen-
eral tendency to have a longer blue tail (or a steep red-ward rise) in the observed
spectrum. Moreover, the line gets more skewed with increasing |B|. However, for
the pixels showing blueshifts (redshifts) in Fig. 5.14.b and c, the lines show excess
positive (negative) skew. This tells us that the blueshifted spectra have a steeper
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blueward rise, while the redshifted ones have a steeper redward rise. The kurtosis
plot ( (Fig. 5.14.d)) shows that the spectral lines are flatter and have lesser outliers
than a Gaussian due to the kurtosis deficit. This flatness is seen for both redshifted
and blueshifted pixels (Fig. 5.14.e and f). Significant differences indicate that these
are not just due to sampling artifacts but also to physical processes. However, the
skewness and kurtosis values are similar in CH and QS. Thus, the spectral profile
shapes are generally similar and not significantly different in these regions.

Having demonstrated the analysis and results obtained for a single dataset,
we now consider all the five datasets listed in Table. 5.1 to increase the statistical
significance of our results. We emphasize that the results for each dataset are
similar to the results reported for DS4 in the previous section. For this purpose,
we average the obtained parameters from all five sets of observations and study
the dependence of intensities and velocities on |B|. Combining all the datasets is
possible because the observations are taken at similar values of µ. We further note
that we present the results only for theMg II k line features for brevity, as the results
for both k and h lines are extremely similar.

5.4 Results from the analysis on the combinedDataset::
Mg II
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Figure 5.15: Same as the top row of Fig. 5.5, but for combined dataset.

In Fig. 5.15, we plot the variation of averaged intensities obtained in k3 (panel
a), k2v (panel b) and k2r (panel c) as a function of |B|. For all three features of
Mg II k line, we find that the intensity increases with increasing |B|, albeit some sign
of saturation at higher |B|. We also find that QS regions show excess intensity over
CHs for the regions with identical |B| and that the difference in intensities increases
with increasing |B|.
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Figure 5.16: Same as the top rows of Fig. 5.8 and Fig. 5.9, but for the combined
dataset.

We study the behavior of Doppler shifts as a function of |B| in Fig. 5.16. We
plot the signed average of the Doppler shifts of k3 (k2) in Fig. 5.16.a (Fig. 5.16.d).
The plots clearly show that both QS and CHs are redshifted on average and that
the redshift increases with increasing |B|. Moreover, for |B| ≤ 30 Mx cm−2, the
CHs show marginally excess redshifts, which disappear at higher |B|. We plot the
velocity variation of pixels showing upflows in panels b and e and of downflows in
panels c and f. There is a clear signature of monotonic increase of upflows and
downflows in CHs with increasing |B|. However, such clear monotonicity is not
seen for QS regions. While the flows increase for QS till about 30 Mx cm−2, they
get saturated thereafter. Moreover, the CHs show larger excess upflows as well
as downflows over QS for larger |B|. Finally, the magnitudes of the flows in k3 are
larger than that in k2.

5.5 Results from the analysis on the combinedDataset::
C II

We display the results for intensity, velocity, and width of the C II line as a function
of |B| in Fig. 5.17. The plots reveal that the intensities increase in both QS and CHs
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Figure 5.17: C IIintensity (panel a), velocity (panel b) and line width (panel c) varia-
tion with |B| for all data sets taken together.
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Figure 5.18: C II upflow and downflow velocity variation with |B| for all data sets
taken together. Panel a shows the variation of upflows binned in |B|, while panel b
shows the variation for downflows.

as a function of |B| (see panel a), similar to the Mg II intensities. Once again, the
QS regions have higher intensities than CHs for the regions with identical |B|, with
the difference in the intensities increasingwith |B|. The Doppler shifts plot (panel b)
suggests that both QS and CH are, on average red-shifted and that themagnitude of
the Doppler shift increases with increasing |B|. We also note that for the smaller |B|
(<30 Mx cm−2), QS is slightly more redshifted than CH. Between 30–50 Mx cm−2,
both show similar redshifts. At higher |B| (>50 Mx cm−2), CHs are slightly more
redshifted than QS. Panel c shows that the line width increases with |B| and that
CHs exhibit larger widths than QS regions.

In Fig. 5.18, we plot the velocity results for upflows and downflows separately
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as a function of |B|. We find that the CH pixels are blue-shifted relative to the QS
pixels with identical |B|. The blueshifts in CH show a marginal relation with the
|B|. Such a relation is not seen for QS, which in fact, shows a marginal reduction in
blueshift with |B| (see panel a). Figs. 5.18.b shows that the redshifts in both CH and
QS are almost the same till ≈ 30 Mx cm−2, following which the CHs show excess
redshifts and QS show saturation.
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Figure 5.19: C II skew and kurtosis as a function |B|, for all data sets taken together.
The top row corresponds to line skew, while the bottom row corresponds to kurto-
sis. Panels a and d correspond to the variation of moments of all profiles, while
b and e (c and f) correspond to moments of blueshifted (redshifted) profiles. The
bands of black and orange, with stars over-plotted, correspond to the respective
moment of a single Gaussian fit. The y-axis has been broken to depict the variation
with |B| better.

In Fig. 5.19, we plot the skew (panel a) and kurtosis (panel d) averaged over
the five sets of observations as a function of |B|. Similar to Fig.5.14, the star and
banded plots depict the moments for the Gaussian fit, while the dots depict mo-
ments for the spectral profile. We find a clear signal of kurtosis deficit and negative
skew of the lines vis-a-vis a Gaussian profile. Furthermore, we also study the mo-
ments for red- and blue-shifted pixels separately (see panel b and c). We find that
blueshifted (redshifted) pixels are positively (negatively) skewed. Such behavior
suggests that the spectra with blue (red) shifts rise more steeply than a Gaussian
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on the blueward (redward) side and fall off gradually on the opposite side. Finally,
the kurtosis shows no dependence on the line shift, as seen from panels e and f,
which have kurtosis as a function of redshift and blueshift of the line. This implies
that the spectral profiles themselves are flatter than a Gaussian profile, irrespective
of whether they are shifted to the blue or red side.

5.6 Si IV:: Results From the Combined Dataset

20 40 60
|B| (Mx cm 2)

1.0

1.5

2.0

2.5

3.0

In
te

ns
ity

 (D
N/

s)

a

QS
CH

20 40 60
|B| (Mx cm 2)

6

7

8

9

Ve
lo

cit
y 

(k
m

/s
)

b

QS
CH

20 40 60
|B| (Mx cm 2)

7

6

5

On
ly

 U
pf

lo
w 

(k
m

/s
)

c

QS
CH

20 40 60
|B| (Mx cm 2)

9.5

10.0

10.5

11.0

11.5

On
ly

 d
ow

nf
lo

w 
(k

m
/s

)

d

QS
CH

Si IV 1394 Å properties per |B| bin

Figure 5.20: Variation of Si IV line intensity (panel.a), average velocity (panel.b),
blueshifts (panel.c) and redshifts (panel.d) as a function of |B| in CHs (black) and
QS (orange). These results are computed across all the datasets and are a more
statistically significant version of the results by Tripathi et al. (2021a).

We now present the results from the intensity and Doppler shift of the Si IV
line for all the datasets. The only difference between the results presented here
and those from Paper I is the inclusion of two additional observations in this work,
thereby increasing the statistical significance of the results. We obtain the Si IV line
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parameters by fitting the spectra with a single Gaussian and constant continuum.
The relevant results are graphically summarized in Fig. 5.20. These results are in
complete agreement with those obtained in Paper I. Moreover, the results obtained
for Si IV bear some similarities with those obtained for C II and Mg II lines.

The intensity (Fig. 5.20.a) and blueshift (Fig. 5.20.c) differences between CHs
andQS, and their relationswith |B| are consistent across all three lines, thoughmore
enhanced for Si IV line. However, the signed average velocities indicate reduced
average redshifts in CHs over QS (Fig. 5.20.b). These average redshifts increase
with |B| and saturate at ≈ 40 Mx cm−2. The CHs show excess blueshifts over QS
(Fig. 5.28.c), with the variation similar to those exhibited by the C II line (Fig. 5.17.c).
The redshifted pixels alone also show a direct relation to |B|, but the QS is more
redshifted thanCHs (Fig. 5.20.d). Note also that the upflowanddownflowvelocities
obtained for Si IV are much larger than those inferred from Mg II (Fig. 5.16) or the
C II lines (Paper II).

5.7 Correlations between Doppler shifts of Mg II, C II

and Si IV

The velocities and intensities show a highly non-trivial relation as a function of the
formation height of different spectral lines. Note here that ascribing exact forma-
tion heights to each of these spectral lines is difficult, and it would be better to
use ‘formation temperature’ of these lines. However, the solar atmospheric strati-
fication may allow us to make a qualitative association between formation height
and formation temperature, and we shall consider them to be almost equivalent
henceforth. We however also note that these associations are adapted from vari-
ous numerical simulations which do not quite incorporate the dynamics of Type II
spicules, for example. Therefore, to investigate if there is any correlation between
Doppler signatures observed in the three different spectral lines viz. Mg II, C II,
and Si IV, we consider the approximate formation height of these lines obtained
from numerical simulations. It has been suggested that, on average, C II lines form
slightly higher in the atmosphere than the Mg II lines. Within the Mg II lines, the
k line forms higher than the h line. Moreover, it has also been found that the line
cores of both k & h lines form higher than their respective peaks (Leenaarts et al.
2013; Rathore et al. 2015b). The Si IV line forms in optically thin conditions, so
ascribing an exact formation height is not possible. However, it forms at a higher
temperature in the TR. We may, therefore, ascribe a greater height to Si IV than the
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Mg II and C II lines. With this prior, we may assume that the formation height (as-
cending order) is approximately Mg II h2 ≤Mg II k2 < Mg II h3 ≤Mg II k3 ≈ C II <
Si IV.

The obtained velocities in different line features of Mg II (Fig. 5.16. b, c, e &
f), C II (Fig.5.18) and Si IV (Fig. 5.20. c & d) clearly show that the velocity magni-
tude increaseswith increasing formation height. Consideringmass flux conserving
flows (Avrett et al. 2013), and that the density decreases as a function of height in
the solar atmosphere, it is plausible to hypothesize that the upflows (downflows)
at lower (greater) heights are enhanced (reduced) while traveling towards greater
(lower) heights.

To check this hypothesis, we investigate the correlations between Mg II, C II,
and Si IV velocities. Since Mg II and C II form at approximately the same height, we
expect these two lines to have similar properties vis-à-vis the Si IV line. In Paper I, it
is suggested that the increase in Si IV blueshift with increasingwith |B|may indicate
the signatures of the solar wind emergence. This motivates us to explore if the
observed flows in chromosphere detected in Mg II and C II lines are in any way
related to those obtained from Si IV. For this analysis, we use the results obtained
from the combined dataset. Note that we only consider the Mg II k2, Mg II k3,
C II 1334 Å and Si IV lines in this analysis. We emphasize that the results from
Mg II h follow the results from the k feature and are not shown for brevity.

We split the velocities observed in Mg II, C II, and Si IV into sets of pixels con-
taining upflows and downflows. Then, we consider scatter plots between flows in
intersection of these sets, e.g., the relation between pixels showing upflows inMg II
k3 & upflows in Si IV, upflows in Mg II k3 & downflows in Si IV and so on. These
scatter plots are obtained for Si IV velocities in Mg II and C II velocity bins to im-
prove statistics. Note that the bins here are selected in deciles, i.e., every 10% of
the data for each Mg II or C II feature is considered to be in one bin.

In Fig. 5.21, we plot the correlations between downflows (top row) and upflows
(bottom row) observed in Si IV with those observed in Mg II k2 (panels a & d),
Mg II k3 (panels b & e) and C II (panels c and f). Panels a, b, and c demonstrate that
the downflows observed in Si IV are strongly correlatedwith those observed inMg II
k2, k3 and C II. For a given value of downflow in Si IV, the downflows are stronger in
k3 and C II than those in k2. Note, though, that the downflows in k3 and C II are very
similar. Moreover, Si IV displays excess downflows in QS vis-à-vis CH for similar
C II and Mg II downflows. These differences in QS-CH Si IV downflows are also
observed to increase with increasing Mg II and C II downflows. Similarly, Panels d,
e and f suggest that the upflows in Si IV have slightly better correlationwith upflows
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Figure 5.21: Inter correlations between Si IV and Mg II k2, Mg II k3, C II Doppler
shifts. The top row depicts correlations between the downflows in Mg II, C II, and
Si IV, while the bottom row depicts correlations between upflows in Mg II, C II, and
Si IV. The columns follow approximate formation height from Mg II k2 to C II.

in Mg II k3 and C II than those in Mg II k2. Furthermore, the correlation is stronger
between C II and Si IV lines, possibly reflecting the influence of an optically thin C II
component forming much higher in the atmosphere (Rathore et al. 2015b). Like
downflows, we find that for the similar upflows in Mg II and C II, the CH exhibit
larger upflows vis-à-vis QS in Si IV. We further note that there is a slight hint of an
increase in the difference of upflows observed in CH and QS in Mg II and C II lines.

In Fig. 5.22, we study the correlations between the upflows in Si IV with down-
flows in Mg II and C II and vice-versa as shown in the top and bottom rows, re-
spectively. We find that the upflows in Si IV have a monotonic relation with the
downflows in Mg II and C II (top row). In addition, we note that for similar down-
flows observed in Mg II and C II, Si IV shows stronger upflows in CH and than in
QS. On the other hand, the Si IV downflows do not show any particular correlation
with Mg II and C II upflows. Furthermore, the Si IV downflows in CH and QS remain
consistent for similar upflows in Mg II and C II. We do not find any relation between
the downflows in Si IV with upflows in Mg II and C II.
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Figure 5.22: Inter correlations between Si IV and Mg II k2, Mg II k3, C II Doppler
shifts. The top row depicts correlations between the downflows in Mg II & C II with
upflows in Si IV, while the bottom row depicts correlations between upflows inMg II
& C IIwith downflows Si IV. The columns follow approximate formation height from
Mg II k2 to C II.

5.8 Inferences from intensity, profile shape, and veloc-
ity diagnostics

The problems of coronal heating in QS and CHs and the formation and acceleration
of solar wind are intimately tied to the structure and dynamics of the magnetic
field in the respective regions. Therefore, comparative studies between CHs and
QS become important in understanding the plasma dynamics and the underlying
processes. The Mg II, C II, and Si IV lines observed by IRIS probe different layers in
the chromosphere & TR, have provided us with a unique opportunity to understand
the dynamics of these regions as a dynamically coupled system. In this paper, we
characterize, in detail, the dynamics of the Mg II line by combining the information
related to the plasma dynamics with that of the magnetic field. In addition, we also
probe the correlations between the Doppler shift obtained for Mg II lines, the C II
line, and those obtained for the Si IV line from Paper I, to investigate if a common
origin may be ascribed to the observed dynamics in the different lines. Below we
summarize and discuss our results followed by an interpretation in §5.9.
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5.8.1 Intensity differences

The intensities in the Mg II h, k lines (both in the core and peaks) & C II lines formed
in the chromosphere, Si IV line formed in the TR increase with |B| (see Fig. 5.15,
Fig. 5.17.a and Fig. 5.20.a). For all three lines, CHs show reduced intensity over
QS for the regions with identical |B|. Moreover, the difference in the intensities
increases with increasing |B|. The observed differences in the chromospheric in-
tensities in CHs and QS suggest that CHs have lower source function values over
QS for regions with identical |B| (Rathore et al. 2015b).

Our results further show that the differences between CH and QS intensities
exist already at the chromospheric level for a given magnetic flux region (see also
Kayshap et al. 2018, & Paper II). We note that the ratios of QS to CH intensities in
the largest |B| (≈ 80 Mx cm−2) bins are smallest in Mg II k2 and increase through
C II, Mg II k3 and Si IV lines as 1.18, 1.22, 1.26, and 1.32, respectively, suggesting an
increasing differentiation between CH and QS from the low chromosphere to TR.

The intensity differences in the CHs and QS in the corona are well known (see,
e.g., Krieger et al. 1973). However, such differences are not seen in either chromo-
spheric or TR above noise level (Stucki et al. 1999; Xia et al. 2004). These observa-
tions led Wiegelmann & Solanki (2004) to attribute the CH-QS intensity differences
to loop statistics in these regions. Based on potential field extrapolations, Wiegel-
mann & Solanki (2004) found that the QS has an excess of longer closed loops over
CH, while similar numbers of shorter closed loops are present in both regions. Us-
ing the scaling laws, valid for optically thin plasma, they proposed that the reduction
in CH intensity over QS naturally results from a deficit of longer loops in CHs.

While the scenario proposed by Wiegelmann & Solanki (2004) is used to ex-
plain the intensity difference in Si IV in Paper I, it may not be directly applicable
to the chromosphere, as also argued by Kayshap et al. (2018). However, since
the loop statistics of Wiegelmann & Solanki (2004) is derived from the extrapo-
lations of photospheric magnetograms, it may be plausible to suggest that the
statistics itself (and not the scaling relation for plasma emission) is also valid for
the chromosphere. Therefore, we may conclude that at a relatively higher |B|, a
deficit of shorter loops in the CHs with respect to the QS is observed already in the
low chromosphere. The source function of the chromospheric lines may in part
be influenced by this loop statistics at chromospheric heights and may explain
the marginal deficit of intensities in CHs over QS. However, given the complexity
of structure in the chromosphere, it may also be possible that magnetoacoustic
shocks and differences in properties of spicules reflect into the intensity differ-
ences in CHs and QS (see, for example Vecchio et al. 2009; Pereira et al. 2012).
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5.8.2 Spectral profile behaviour of C II line

Our observations show larger line width in CH over QS for regions with similar
|B|. From simulations, it has been observed that opacity plays an important role
in broadening the lines (Rathore & Carlsson 2015; Rathore et al. 2015b). Opacity
broadening may be qualitatively explained by Eq.25 of (Rathore & Carlsson 2015),
where in the absence of any flows, the opacity broadening is proportional to the
ratio of column mass at the line wing to the column mass as line center. From Eq.
23 and 20 of (Rathore & Carlsson 2015), we find:

1

mc(0)
=

χl0

ρ
+

1

mc(∞)
, (5.5)

where mc(∆ν) is the column mass at a shift ∆ν , ∆ν = 0 representing the line core,
∆ν = ∞ representing the continuum, χl0 the opacity at line core per unit volume,
and ρ being the density. Thus, with other terms being constant, mc(0) depends
directly on the density ρ, and any reduction in density reduces the line core column
mass, thereby increasing the opacity broadening. Assuming the line intensity to be
directly related to density, a reduction in density would be seen as a reduction in
the core intensity. Thus, density reduction in the line core of CH over QS can neatly
explain the observed intensity and linewidth differences. Note that Eq. 5.5 has been
derived under a static atmosphere, while in the real solar atmosphere, there would
be components of non-thermal velocities and micro-turbulence that will affect the
line width. Furthermore, the enhanced width may also have a component from
increased non-thermal width. This may occur due to spicular activity, which may
give rise to enhanced widths due to high velocity Alfveń waves, occuring especially
in the network regions (see, for example Van Ballegooijen et al. 2011; Tian et al.
2014).

Our observations further show that the spectral profiles have less kurtosis than
a Gaussian and are negatively skewed vis-à-vis a Gaussian profile. To understand
these profiles further, we look at the skewand kurtosis of redshifted and blueshifted
profiles separately and attempt to disentangle their properties in Fig. 5.19. The
skew is observed to change sign depending on the line shift. The observed profiles
are observed to be positively (negatively) skewed if the profile is blueshifted (red-
shifted). Since the comparison is performed with respect to a Gaussian fit, it would
mean that the blueshifted (redshifted) profiles have a steeper blueward (redward)
rise than a Gaussian. Such asymmetric C II profiles have been observed in 1-D
simulations by Avrett et al. (2013). Moreover, the authors have observed increas-
ing asymmetry with increasing atmospheric velocities. It has been suggested by
Avrett et al. (2013) that the asymmetry arises if the flows are column mass con-
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serving – implying that the vertical velocity is inversely proportional to the density.
Hence, the part of the line that is emitted higher shows a greater shift than the part
of the line emitted lower. Thismay be a possible explanation for the observed skew
of the line. However, note that in general the spectral profile shape depends on the
variation of source function with wavelength, which further depends on the cou-
pling of the source function to local conditions and velocity gradients among other
effects.

Finally, we see that the kurtosis is independent ofwhether the profile is blueshifted
or redshifted and is significantly different from a Gaussian. It also shows a distinct
variation with |B|. Thus, in general, C II profiles are flatter than a Gaussian, and the
flatness increases with increasing |B|. The Ca II lines in spicules have been shown
to change from having a central reversal to a flat-topped to a peaked profile with
increasing formation height by Zirker (1962). Such changes in profiles were ex-
plained by a reduction in opacity in these lines. A similar picture may also hold with
the C II line, which may show such flat-topped profiles due to opacity variations.
Note, however, that similar kurtosis-deficit profiles have been seen as the presence
of a “box-shaped” profile by Rathore et al. (2015b). From 3D simulations, Rathore
et al. (2015b) assert this to be a consequence of a steep rise in the source function
near the continuum, with a more gradual rise near the core formation region. Also
note that such a source function variation would also give rise to broader lines, as
shown in Rathore et al. (2015b). Thus, the flat rise of the source function, dictated
by the underlying |B|, may cause the kurtosis deficit in the C II line. However, these
deviations of the spectral line fromaGaussian are similar in both CHs andQS. Thus,
the similarity in spectral shapes points to similar underlying processes giving rise
to CH and QS spectral profiles.

5.8.3 Doppler shift: Variations and correlations

Doppler measurements in all three lines demonstrate that, on average, both the
chromosphere &TRare red-shifted (see. Fig. 5.16.a & d, Fig. 5.17.b, and Fig. 5.20.b).
The average redshifts are found to increase with |B| and increase from Mg II k2 to
Si IV for similar |B|. By studying the red-shifted and blue-shifted pixels separately,
we find that in the chromospheric lines, CHs have excess upflows as well as down-
flows vis-á-vis QS for identical |B| and that the excess increases with increasing
|B| (see Fig. 5.16, and Fig. 5.18). However, in the TR, CHs have excess (reduced)
upflows (downflows) over QS for the regions with identical |B| (see Fig. 5.20. c &
d). With uncertainties, the magnitudes of upflows and downflows are in approxi-
mate descending order of Si IV, Mg II cores, C II, and Mg II peak. We further note
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that while Mg II k3 and C II lines show similar downflows, the upflows are larger in
Mg II k3.

To assess any (or otherwise) association between the flows observed in the
chromosphere and TR, we perform a correlation study in the intersection of pixel
sets showing flows in different lines. That is, we study the mean variation of up-
flows in the TR pixels, which also show upflows in the chromosphere, and so on
for different combinations of flows. This analysis gives us the variation of mean
TR flows with chromospheric flows and provides information on the persistence
of flows in different lines. We find that the flows in the chromosphere and TR are
tightly correlated, i.e., the downflows in the chromosphere with both upflow and
downflows in TR and upflows in the chromosphere with those in TR. However, we
did not find any correlation between chromospheric upflows with downflows in TR.
Moreover, for similar downflows (upflows) in the chromosphere, the CHs show re-
duced TR downflows (excess upflows) over QS. Additionally, for similar downflows
in the chromosphere, the CHs show excess upflows over QS in the TR.

The observations reported here lead to two questions. Firstly, what physical
mechanism(s) give rise to these flows? Secondly, is it possible to explain the ob-
served differences between the flows observed in CH and QS in the chromosphere
and TR, including the difference in the intensities discussed in §5.8.1? While we
deal with the former here, the latter is taken up in the §5.9.

The tight correlations between TR downflows measured using Si IV and those
observed in the chromosphere measured using Mg II and C II may either be ex-
plained by field-aligned downflows due to condensations fromcorona to TR to chro-
mosphere (see, e.g., Klimchuk 2006a; Tripathi et al. 2009b, 2010, 2012) or due to
return flows of type-II spicules (Klimchuk 2012; Ghosh et al. 2019, 2021; Bose et al.
2021). However, we note that the observed magnitude of the TR downflows are
much larger than those predicted using 1D hydrodynamic simulations of coronal
impulsive heating followed by evaporation and condensation. Therefore, for the
reasons elaborated in Ghosh et al. (2019, 2021), it is more likely that the observed
downflows here are due to the return flows of type II spicules. Our finding that the
speeds of chromospheric downflows are lower than those in TR is very likely due to
the plasma flowing from lower density to higher density. However, note that the net
deceleration of the plasma depends on the interplay of deceleration due to atmo-
spheric stratification &magnetic pressure and acceleration due to gravity & plasma
compression.

Our observations further show that the upflows in the chromosphere and TR
are also correlated. Moreover, these upflow show an increase in magnitude with in-
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creasing |B| as well as atmospheric height. This may be possible if the upflows are
moving through an expanding flux tube under the assumption of constant mass
flux. However, the upflows may have been caused by the launch of events like
Type II spicules (De Pontieu et al. 2007a; Tian et al. 2008a, 2014; Samanta et al.
2019). However, note that such upflows may also be generated due to upward
propagating waves (e.g., Cranmer & Van Ballegooijen 2005). Since Alfvén waves
are known to be ubiquitous in the chromosphere (De Pontieu et al. 2007b), disen-
tangling the exact effects of Alfvén wave v/s spicule-like propagation upward is
difficult (see, however, Ghosh et al. 2019, 2021).

Finally, the chromospheric downflows also bear a direct relationship with the
upflows in TR. Such correlations suggest a common origin of these flows and hint
towards the existence of bidirectional flows. Bidirectional flows have been ob-
served in QS & CH (predominantly occurring in the CH) network regions by Aiouaz
(2008), and in active regions byBarczynski et al. (2021) as redshift in TRandblueshifts
in the low corona (see also Gupta et al. 2018a, for bidirectional flows in transient
events). We propose that such bidirectional flows occurring between the chromo-
sphere and the TR can suitably explain our observations

The scenario we propose is illustrated in Fig. 5.23. The vertical color bars
changing fromdeep yellow in the photosphere towhite in the corona indicate reduc-
ing density with increasing height in the atmosphere. The approximate formation
height (or rather, a proxy for temperature) of different ions corresponding to the
spectral lines studied here are labeled with horizontal lines. The ‘asterisks’ indicate
the location of an impulsive event, while the arrows mark the direction of expected
flows. The blue (red) arrows indicate upflows (downflows).

We present four different scenarios based on the same physical mechanism
to explain the three sets of observations. As evidenced by similar skew & kurtosis
in C II 1334 Å line (see Paper II) and non-thermal widths in Si IV (see Paper I), it is
plausible to conclude that similar physical mechanisms give rise to the observed
spectral profiles in CHs and QS. This mechanism, in our interpretation, is an impul-
sive dumping of energy in CHs and QS. For an impulsive event occurring between
the formation height of Si IV and C II or Mg II, bi-directional flows will be produced
in the form of upflows in Si IV and downflows in C II and Mg II. Since the chro-
mosphere is denser than the TR, the chromospheric radiative cooling time scales
are smaller. Hence, the downflows would cool down faster and be visible in cooler
lines like Mg II and C II, while the upflows persist in relatively hotter lines like Si IV.
Some of the upflows observed in Si IV may persist till greater heights and then fall
back, similar to Type II spicule return flows (Fig. 5.23.b). The returning flows will be
observed as persistent downflows in all three lines, with descending speeds. We
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Figure 5.23: A schematic depicting a unified picture of flow generation, including
observed correlations between flows. The vertical bar denotes density reducing
with height from dark yellow to white. The red asterisk depicts an impulsive event,
which gives rise to flows (arrows). Blue upward arrows depict upflows, and red
downward arrows depict downflows. Panel a shows the basic bidirectional flow
generation, which eventually gives rise to the return flow in Panel b. Impulsive
events occurring much higher than Si IV formation height, giving rise to downflows,
is shown in Panel c. Upflows generated due to impulsive events low in the atmo-
sphere are depicted in Panel d. See in-text for details.

note, however, that the persistent downflows may also be caused by the impulsive
event occurring above or about the formation height of Si IV (Fig. 5.23.c) and may
have similar signatures of descending speeds as in the previous case. Finally, the
impulsive events may also occur either below or at the height of the formation of
Mg II peaks (Fig. 5.23.d), resulting in the launch of chromospheric jets that may
show persistent upflows in chromosphere and TR, followed by the downflows at
later times.

Bidirectional flows in an expanding, cylindrically symmetric flux tube have been
observed in field-aligned 1-D simulations by He et al. (2008). In these simulations,
impulsive events deposit energy at the height of≈ 5Mm, which is also the location
where the expansion of the flux tube starts. The results demonstrate that at the
onset of the impulsive event, the plasma moves outward from the location of the
impulse, showing bidirectional flows. He et al. (2008) show that the velocities in
Si II, C IV and Ne VIII obtained from their setup match those observed by Tu et al.
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(2005). He et al. (2008) further show that the downflows at 104 K are ≈ 2 km/s.
The magnitude of these downflows increases with height, reaching up to 4 km/s
near the energy dumping heights. These velocities were obtained with a |B| of 56.5
Gauss in the simulation. The velocities obtained in this simulation are consistent
with the downflow speeds observed in Mg II k2 (see Fig. 5.16.f) at ≈ 56 Gauss, but
it is much lower than the downflow speeds observed in Mg II k3 and C II.

Hansteen et al. (2010) performa3D simulation of aQS region for different aver-
age |B|, spanning from the convection zone to the corona. It is found that impulsive
events due to reconnection occurring at various heights give rise to bi-directional
flows, seen as co-spatial blueshifts (redshifts) in the corona (TR) concentrated at
loop footpoints.

Such events occurring across a range of heights can give rise to correlated
flows similar to the results reported here. Hansteen et al. (2010), in their B1 model
setup, were able to reproduce velocities consistent with blueshifts observed in the
corona (see Fig. 11 of Hansteen et al. 2010). Note, however, that the downflows
speeds near the formation temperature of Mg II and C II inferred from these simu-
lations were between 2− 4 km/s, which are lesser than those reported in this work.
Nevertheless, we note that the scenario presented by Hansteen et al. (2010) may
potentially explain the correlated bidirectional flows reported in this paper.

Finally, while the above-described scenario based on impulsive events may ex-
plain the observed downflows, it is important to highlight that spicule-like flowsmay
also be obtained due to the ‘squeezing’ of flux tubes near the chromosphere (see
e.g. De Pontieu et al. 2007a; Martínez-Sykora et al. 2011, 2017, 2019, and also Isobe
et al. (2007b) ), or through the dynamics ofmagnetoacoustic shocks (Kayshap et al.
2021). The rising plasma from the ’squeeze’ has been observed to be heated up and
detected in various IRIS lines such as Mg II and Si IV (Martínez-Sykora et al. 2017).
Thus, the persistent upflowsmay also be explained through such spicule-like flows,
while the downflowsmay be explained by the return of such spicule-like flows. Note
that, throughout the paper, we assume that the type-II spicules are produced due
to impulsive events (Moore et al. 2011, 2013; Martínez-Sykora et al. 2011; Samanta
et al. 2019).
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5.9 Aunified scenario the origin of the solarwind, switch-
backs and QS heating

While the occurrence of impulsive events at the interface between chromosphere
and corona may explain the observed flow variations with |B| in different lines and
their interrelations, the question remains as to what leads to the observed differ-
ences between the intensities as well as flows in CHs and QS. To explain the dif-
ferences in the intensities, in §5.8.1, we invoked the loop statistics in CHs and QS
derived by Wiegelmann & Solanki (2004). The predominant velocity differences
between CH and QS are: i) reduced Si IV downflows in CHs over QS for similar
downflows in the chromospheric lines, and ii) excess Si IV upflows in CHs over
QS for similar upflows and downflows in the chromospheric lines. These results
indicate an excess acceleration of upflows in CHs and an excess deceleration of
downflows in QS. Furthermore, while the QS shows enhanced intensity over CHs for
regions with similar |B|, the CHs show larger flow speeds (except Si IV downflows)
over QS. Such an observation thus hints towards a unified scenario of heating the
corona in QS and CH and the emergence of the solar wind. Therefore, we then ask
if it is possible to combine the loop statistics and the occurrence of flows due to
impulsive events illustrated in Fig. 5.23 to explain the observed differences in in-
tensities as well as the Doppler shifts in CHs and QS, similar to that is discussed in
Tripathi et al. (2021a) for Si IV.

A graphic depicting the scenario we propose is shown in Fig. 5.24. The top
panel depicts the predominant topology in CHs while the bottom panel is for QS
regions, based on the loop statistics of Wiegelmann & Solanki (2004), according to
which both CHs and QS have an equal number of short closed loops, but QS has
predominantly large closed loops, and CHs have open field lines. In CH regions,
the interchange reconnection (e.g., Fisk 2005; Janardhan et al. 2008), leading to
impulsive events, may occur between closed and open field lines, while in QS, the
impulsive events will be due to reconnection among closed-closed loops, similar to
those observed in the core of active regions during the transient formation of loops
(see Tripathi 2021). The excess open and expanding flux tubes in CHs may cause
preferential acceleration of upflows in CHs over QS. In principle, the scenario pro-
posed here is similar to those employed by Tian et al. (2008b,a); He et al. (2007) to
explain the Doppler shifts observed in QS-CH in coronal and TR lines, and similar
to the Fig. 5 of He et al. (2010). Note that the concept of interchange reconnection
has been invoked to explain active region outflows by Del Zanna et al. (2011); Bar-
czynski et al. (2021), solar wind disappearance events by Janardhan et al. (2008),
active region jets, X-ray & cool jets in polar coronal holes (Moore et al. 2011, 2013,
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Figure 5.24: A schematic depicting the proposed picture of impulsive heating oc-
curring across different magnetic field topologies. We show a CH topology in the
top panel, including an open funnel-like structure (black) and closed loops of vary-
ing sizes (yellow). Impulsive events (red asterisks) due to interchange reconnec-
tion between the open and closed field lines give rise to bidirectional flows (blue
and red arrows). Of these flows, the upflows are enhanced due to density strati-
fication and the expanding flux tube in CHs. Interchange reconnection may occur
over a range of heights, and the corresponding bidirectional flowsmay be observed
across different spectral lines marked in approximate order of formation heights.
An example of the reconnected field line propagating outward as a switchback is
depicted as a dashed line, with the approximate propagation direction depicted by
black arrows. Bottom panel: QS topology is depicted with the same terminology as
CH topology. Note here that while one does expect correlated bidirectional flows
in QS, the upflows are not as accelerated as CHs due to the absence of funnel-like
structures. See in-text for more details.
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2015) and type III radio burst (e.g., Mulay et al. 2016b).

Under the scenario presented in Fig. 5.24, the impulsive events may occur
across a range of heights via magnetic reconnection among open field and closed
loops of various heights in the CHs. Thus, if the energy dumping events were to oc-
cur below the formation height of Mg II, the upflowing plasma may be accelerated
preferentially in CHs, and reach Si IV heights, where a strong correlation is obtained.
Similarly, if the event were to occur at much greater heights, or if plasma launched
from the lower heights (e.g., type II spicules-like events) are returning to the low so-
lar atmosphere, the downflowing plasmamay be falling fromSi IV formation height,
that will show deceleration due to increasing density towards lower atmosphere
mapped by Mg II. Assuming a mass flux conserving flow, we have ρV = const,
where ρ is the mass density and v is the velocity. For a given downflow in Si IV,
the downflows in chromospheric lines are smaller in QS over CH (Fig. 5.21.a-c).
Hence, the density increase from Si IV formation heights to Mg II formation heights
is larger in QS over CH, resulting in a larger velocity reduction in QS. However, note
that since the mass flux is typically different for CHs and QS, a quantitative com-
parison is beyond the scope of this work.

For bidirectional flows due to reconnection event between Mg II and Si IV for-
mation heights, the counterpart upflows will be preferentially accelerated into Si IV
formation height in CHs over QS due to excess open expanding flux tubes in CHs
over QS. Since the QS has predominantly closed loops, the closed loop reconnec-
tion only serves to fill the loop with plasma, raising its intensity. Thus, impulsive
events occurring across a range of heights combined with loop statistics in CHs
and QS elegantly tie in all our observations and provides a unified scenario for QS
heating and solar wind emergence.

Finally, the scenario we present in Fig. 5.24 is also appealing to explain the
switchbacks observed in the near-Sun solar wind (Balogh et al. 1999; Bale et al.
2019) using Parker Solar Probe. One of the competing scenarios for the forma-
tion of these switchbacks is through interchange reconnection events occurring in
the TR and lower corona (Fisk & Kasper 2020; Mozer et al. 2021; Zank et al. 2020;
Tripathi et al. 2021a; Fargette et al. 2021; Bale et al. 2021; Sterling et al. 2020; Ster-
ling & Moore 2020, see also Liang et al. (2021) for an assessment of the viability
of switchbacks from the linear theory of Zank et al. (2020)). The kinked-field lines
as a result of reconnection between the closed loop and open field in the coronal
holes, as shown by the black arrow in Fig. 5.24, may be transported outwards into
the solar wind, which are then observed as rotations in themagnetic field. In such a
scenario, the flows reported in this paper serve as constraints and modeling inputs
for solar wind switchback simulations.
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Astraightforward association between the scenariowe present and polar coro-
nal hole jets is clearly seen. Interchange reconnection seems to play the predomi-
nant role in the generation of mass flux and plasma heating in these events. How-
ever, note that the jets observed by Moore et al. (2015) have velocity almost two
orders of magnitude more than the velocities we report, and show morphological
differences arising due to twist and shear in the ambient magnetic field (see also
Moore et al. 2013). Since we are averaging overmultiple pixels for boosting the sig-
nal, checking for such morphological signatures is beyond the scope of this work.
However, newly-emerged bipolesmay interact with the ambient vertical field similar
to the scenario proposed by Moore et al. (2011), giving rise to Spicule-like events.
The interaction height and amount of magnetic flux converted into thermal energy
would then determine the lines which show correlated flow.

The observational results and the scenario presented in this papermay provide
an explanation for solar wind formation including switchbacks and the dynamics
observed in the QS. We, however, stress that disentangling the absolute effects
of wave propagation v/s impulsive upflows is needed. Furthermore, disentangling
the effect of the return of spicule-like events v/s downflows due to impulsive events
occurring higher up in the TR is also difficult. Disentangling these different effects
requires further high-resolution spectroscopic observations simultaneously taken
at different heights, combined with numerical simulations incorporating radiative
transfer & evolution of solar corona into the solar wind. Such observations may be
provided with the EUV High-Throughput Spectroscopic Telescope (EUVST) on the
upcoming Solar-C mission (Shimizu et al. 2020).

5.10 Distribution of chromospheric and transition re-
gion properties as a function of |B|

We present here the distribution of intensity and velocity from Mg II, C II, and Si IV
lines as a function of |B|. The plots shown from Fig. 5.25 - 5.28 are the same as
those from Fig. 5.15 - 5.20, except that the errorbars reported corresponding to 1

and 90 percentile of the samples in each bin.

Since the overall distribution of the various quantities look very similar in CHs
and QS, the distribution within bins of |B| reflects how systematic differences arise
in the ensemble of pixels considered. The distribution of samples between CH and
QS slowly drift apart in their mean values, depicting the transition from statistical
signatures in the lower atmosphere to very clear signatures in the corona. Thus,
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the distribution of samples in each bin provides further constraints to the expected
results from simulations.
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Figure 5.25: Same as Fig. 5.15, but the errors now represent 1 and 90 percentile
bounds of the distribution of samples present in the bin of |B|.
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Figure 5.26: Same as Fig. 5.16, but the errors now represent 1 and 90 percentile
bounds of the distribution of samples present in the bin of |B|.
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Figure 5.27: Same as Fig. 5.17 and 5.18, but the errors now represent 1 and 90

percentile bounds of the distribution of samples present in the bin of |B|.
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Figure 5.28: Same as Fig. 5.20, but the errors now represent 1 and 90 percentile
bounds of the distribution of samples present in the bin of |B|.
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Chapter 6

2.5 D self-consistent flux emergence

Numerous differences in the dynamics and thermodynamics, alongwith
many similarities in the underlying processes in CHs and QS, are ob-
served. To study these dynamics in detail, we perform 2.5 D numerical
experiments of self-consistent flux emergence in CH and QS topologies
by incorporating localized resistivity, thermal conduction, and optically
thin radiation. This work is in preparation for submission.

Our observational findings presented in Chapters. 3, 4 & 5 demonstrate that the
physical processes occurring in CHs and QS are intimately tied and present us with
strong evidence of a strong correspondence between the coronal heating in QS and
CHs and formation of solar wind. Our results further demonstrate that a difference
in magnetic field topology results in this emergence of difference resulting from
similar underlying processes. To investigate this difference further, however, we
would need to study the response of the plasma to similar dynamical processes in
various topologies using MHD simulations.

We have found that both the CHs and QS experience local deposition of en-
ergy, which may be utilized to drive the solar wind (CH) or locally heat the plasma
(QS) (Upendran & Tripathi 2022, 2021b; Tripathi et al. 2021a). Parker (1988b), for
example, envisions this energy depositionmechanism throughmagnetic reconnec-
tion driven by photospheric motions. Indeed, footpoint driving tangles the coronal
magnetic field, leading to a buildup of free energy and subsequent dissipation. An-
other crucial mechanism of injecting free energy into the system is the emergence
of bipolar magnetic flux from the convection zone into the atmosphere.

Magnetic flux emergence has been studied in great detail (see, for example
Cheung & Isobe 2014, for a comprehensive review). Nozawa et al. (1992), for in-
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stance, perform a theoretical study of flux emergence by perturbing an isolated
flux sheet in the convection zone. Several numerical studies have been performed
to study the properties of the emerging flux sheets into the atmosphere(Shibata
et al. 1989a,b; Isobe et al. 2007a, to name a few). Typically, the perturbations in a
flux sheet cause an imbalance of pressure in the convectively unstable convection
zone, causing the perturbed region of the flux sheet to rise. As it rises, it forms a
loop with the plasma draining down along the loop towards the footpoints. Finally,
when the loop stops rising upwards into the corona when the net pressure balance
is reached. The acceleration and evolution of these emerging loops depend mainly
on the pressure scale height, speed of sound, and the plasma beta in the flux sheet
(see Nozawa et al. 1992, for details).

The emergence of a flux sheet represents a transient process bringing mag-
netic flux and mass from within the Sun into the atmosphere. The redistribution
of the mass and energy upon magnetic reconnection depends on the topology of
the background magnetic field. Yokoyama & Shibata (1996) perform a suite of flux
emergence simulationswith different coronalmagnetic field topologies to simulate
emergence in different regions of the Sun. In this suite ofmodels, the emerging flux
undergoes explosive, fast magnetic reconnection due to localized, anomalous re-
sistivity. The reconnection results in the formation of large-scale plasma motion
in jets, which show differences in structures and properties depending on the mag-
netic field topology. However, thesemodels do not incorporate thermal conduction
or radiative losses. Miyagoshi & Yokoyama (2004) incorporate thermal conduction
into the horizontal background field setup of Yokoyama & Shibata (1996) and find
the formation of cool jets due to magnetic reconnection.

Simulations of flows in CHs are numerous, ranging from 1 D (e.g., He et al.
2008) to 2 D (e.g., Aiouaz et al. 2005) and 3 D (e.g., Hansteen et al. 2010) setup.
Aiouaz et al. (2005) construct a 2 D setup of funnel topology mimicking a CH and
study the thermodynamic response of the plasma to an assumed heating function
in the funnel. Ding et al. (2010) perform a 2.5 D flux emergence experiment in a
uniformly vertical background field, where the emergence was parameterized by
varying the flux at the bottom boundary. They find the resultant jet temperatures
and velocities to depend on the strength of the background magnetic field. Ding
et al. (2011) investigate the dependence of the properties of these jets on different
background atmospheres. They demonstrate that interchange reconnection in the
transition region is necessary to obtain substantial emission in the Fe IX spectral
line. Yang et al. (2013), on the other hand, demonstratemass deposition in the open
flux system through flux cancellation by the horizontal motion of closed-loop sys-
tems through the open flux. Yang et al. (2018) consider a funnel-like background
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topology, with a predefined loop undergoing emergence and interchange reconnec-
tion. They demonstrate the formation of a hot and cool jet adjacent to each other
accelerated by very different mechanisms. Note that in these simulations, Ding
et al. (2010, 2011); Yang et al. (2013, 2018) consider many of the physics terms,
including thermal conduction and a parameterized form of optically thin radiative
losses.

Hansteen et al. (2010) perform a 3 D flux emergence experiment in a CH-like
setup. They find numerous reconnection events, Ohmic dissipation, and wave pro-
cesses in the atmosphere. Moreno-Insertis & Galsgaard (2013) perform a 3 D flux
emergence experiment with a twisted flux rope in an oblique background field rep-
resenting a CH topology. Note that the simulations byMoreno-Insertis & Galsgaard
(2013) do not incorporate thermal conduction or radiative cooling effects. They re-
port the formation of hot and cool jets and a high-density ‘wall’ around the emerged
flux and jets. A similar jet formation was seen also in simulations by Nóbrega-
Siverio et al. (2016); Nóbrega-Siverio & Moreno-Insertis (2022), who also included
thermal conduction and radiation effects.

A self-consistent emergence of flux into the solar atmosphere and its interac-
tion with the backgroundmagnetic field is important to obtain an accurate sense of
the dynamics and thermodynamics of reconnection and jet formation processes.
Furthermore, a comparative study of differences in the processes occurring in CHs
and QS is important to understand if similar processes may drive different global
outcomes due to a difference in magnetic field topology. In this work, we perform
self-consistent flux emergence experiments in a horizontal coronal background
field depicting QS and an oblique background field depicting a CH. The atmosphere
and the properties of the flux sheet are kept similar in both experiments, and we
study the influence of adding different dissipation and redistribution terms in these
setups. In §. 6.1, we describe the simulation setup. Then we describe the results
in QS in §. 6.2.1, while we describe the CH results in §. 6.2.2. We finally conclude
with a general comparison of the observations and simulations in §. 6.3.

6.1 Simulation setup

Our aim is to consistently model the emergence of flux sheet from the convection
zone into the atmosphere and its interaction with a background field throughout its
emergence. For this, we consider (i) the flux sheet in the convection zone, (ii) the
ambient magnetic field, and (iii) the initial atmosphere in this work. A perturbation
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in the flux sheet results in its evolution and subsequent interaction with the ambient
magnetic field. We solve the MHD equations (Eq. 2.1) in a 2.5 D setup, considering
all three components of the variables, with the variations only along the horizontal
(x) and vertical (z) directions. The derivatives and dependence along the y direction
(perpendicular to the paper/screen) are ignored. Our simulation grid extends from
∼ 1.55Mmbelow the photosphere to∼ 82.15Mmabove, in the z-direction. The grid
spacing is uniform till 7.75 Mm with 200 cells, while it increases in a stretched grid
with 350 cells. We use a reflective bottom boundary, while the top boundary is open
(similar to the upper and lower boundaries in Shibata 1983). Horizontally along
the x-direction, our domain spans 121.21 Mm, with 520 cells between ∼ 40.3 Mm
(=130 in code units) and ∼ 80.6 Mm (=260 in code units) while having a logarith-
mically increasing grid towards both boundaries. We have such a horizontal grid
structure since the flux emergence, and the resultant dynamics of interest occur
only between ∼ 40.3 and ∼ 80.6 Mm. The horizontal boundary is kept periodic.
The gravitational acceleration is taken to be uniform and in the negative z direction,
while the gas has a specific heat ratio of γ = 5/3.

The normalization of all the physical quantities is performed using the unit
density (ρ0 = 1.7× 10−7 g cm−3), length (L0 = 3.1× 107 cm) and velocity (v0 = 1.2×
106 cms−1) as formulated by PLUTO (the normalization is also shown in §. 2.3). The
derived non-dimensionalizing timescale is ≈ 26 s (i.e., 1 code time step is ≈ 26 s).
The pressure and magnetic field are normalized as ρ0v

2
0 and

√
4πρ0v20 , respectively.

The temperature in code units is obtained as TC = pC/ρC , and is transformed into
units of Kelvin through T = TCµmuv

2
0/kB. Here, µ is the meanmolecular weight,mu

is the atomic mass unit, and kB is the Boltzmann constant. This setup is similar to
the simulation setup of Yokoyama & Shibata (1996).

6.1.1 Initial condition and background field

The atmosphere is assumed to be initially in magnetohydrostatic equilibrium. To
define the atmosphere, we first specify the temperature profile of the gas. The
atmosphere consists of three parts, following Yokoyama & Shibata (1996): a con-
vection zone, a photosphere, and a corona. For z ≥ 0, the temperature is defined
as:

T (z) = Tphot +
(Tcor − Tphot)

2

(
tanh

(
z − ztr
wtr

)
+ 1

)
, (6.1)
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while for z < 0, it is defined as:

T (z) = Tphot −
(
a

∣∣∣∣dTdz ad

∣∣∣∣) z. (6.2)

Here, Tphot is the photosphere/chromospheric temperature (≈ 17000 Kelvin), Tcor

is the coronal temperature (≈ 2 × 106 Kelvin), ztr is the height (=2480 km), wtr is
the width (=155 km) of the transition region. |dT/dz| = 1 − 1/γ is the adiabatic
temperature gradient. Under this setup, for a > 1, the layer becomes convectively
unstable (Nozawa et al. 1992). Following Yokoyama & Shibata (1996), we have
used a = 2 in our simulations.

As alluded to earlier, we have two models with different background fields,
one with a horizontal background field (model_QS) and another with a slanted back-
ground field (model_CH)mimickingQS andCH topologies, respectively. In model_QS,
we consider a formulation with the flux sheet in the convection zone and a horizon-
tal field in the corona alone, following Miyagoshi & Yokoyama (2004). However,
for model_CH, we consider the flux sheet in the convection zone while we impose a
uniform slanted field across the whole box. We define the magnetic field as:

B(z) =

(
2p(z)

β(z)

)
, (6.3)

where the equation is different from Yokoyama & Shibata (1996) because of differ-
ent normalization in PLUTO. β(z) is the plasma beta and is defined as:

1

β(z)
=

1

βfs(z)
+

1

βbg(z)
, (6.4)

where βfs(z) specifies the flux sheet, and βbg(z) specifies the background in the
model_QS case. The flux sheet is defined as:

1

βfs(z)
=

1

4βfs0

(
1 + tanh

(
z − zfsL
wfsL

))(
1− tanh

(
z − zfsU
wfsU

))
, (6.5)

where βfs0 is the plasma beta at the center of the flux sheet (=4.0), zfsL is the lower
end (=-1240 km), and zfsU (=-620 km) is the upper end of the flux sheet, while wfs

(=155 km) determines how fast the field rises at either end. The plasma beta at the
center of the flux sheet is a crucial factor in determining the emergence time scale
of the flux sheet.

In model_QS, we define the coronal magnetic field as:
1

βbg(z)
=

1

2βbg0

(
1 + tanh

(
z − zcor
wcor

))
, (6.6)
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Figure 6.1: Initial configuration of the system.

where the coronal field starts from zcor (=10850 km), rises with width wcor (=852.5
km), and has a plasma beta of βbg0 = 0.1. However, note that to force reconnection
between the emerging flux and the background field, the coronal field is oriented
opposite to the field in the convection zone.

We then determine the initial variables by solving themagnetohydrostatic equi-
librium equation:

d

dz

(
p(z) +

B2(z)

2

)
+ ρ(z)g = 0. (6.7)

In model_CH, we do not use the formulation of the coronal field from Eq. 6.6.
We assume the initial atmosphere is in static equilibrium and includes only the flux
sheet in the convection zone. Instead, we impose a slanted field of the form B⃗ =

(Bcor cos θcor, 0, Bcor sin θcor), where Bcor ≈ 0.0197 and θcor = 135◦. Since this is a
uniform field that is i) divergence-free, ii) curl-free, and iii) constant with time, we
may split the magnetic field into a background field and a time-varying field (Powell
1994). This results in a modification of the MHD equations and the dependence of
the energy on only the time-varying field.

The initial condition for different system parameters along a vertical column
of the grid is depicted in Fig. 6.1.
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6.1.2 Dissipation and redistribution terms

We have now described the initial conditions, the boundary conditions, and the
setup of the two models viz. model_CH and model_QS at large. These two mod-
els also include non-ideal terms, i.e., localized resistivity, thermal conduction, and
optically thin radiative loss.

We consider a localized, anomalous resistivity that depends on the drift veloc-
ity, following (Sato&Hayashi 1979; Ugai 1992; Yokoyama&Shibata 1994, 1996).The
functional form is given by:

η :=

{
0 , if vd < vc

min{1, α(vd/vc − 1)2} , vd ≥ vc
(6.8)

The resistivity is defined in terms of the drift velocity as vd = J/ρ, where J is
the current density. vc is a threshold above which the resistivity effects set in (=103),
while α = 0.01. Note that these values are not normalized by the velocity scale, and
only the ratio vd/vc has a physical meaning. The resistivity effects will set in only
in regions with high current density (or alternatively low density), i.e., typically near
current sheets, and will result in a fast, Petschek-like reconnection in the magnetic
field setup.

We include anisotropic field-aligned thermal conduction, considering only the
term along the field lines from Eq. 2.2. κ|| is taken to be Spitzer-type, with κ|| =

κ0T
5/2, and κ0 = 10−6 erg s−1 cm−1 K−7/2. We ignore the conductivity across the

field lines anddonot impose any saturation flux in this setup (Miyagoshi &Yokoyama
2004).

Weconsider optically thin radiative losses in thiswork using theCHIANTI database
(v10 Dere et al. 1997; Del Zanna et al. 2021). For computing the radiative losses,
we need the characteristic density and a temperature grid. We compute the den-
sity at the base of the corona, which is 1011 cm−3. We then compute the optically
thin radiative loss function over a temperature grid of logT = 4 to logT = 9 over
300 points in log space, and use coronal abundances (Fludra & Schmelz 1999). In
our simulation, we make the radiative loss as zero if the temperature falls below
≈ 85000 Kelvin or if the number density growsmore than 1013 cm−3, which is typical
of chromosphere or lower transition region. We perform this since the optically thin
radiative cooling formalism fails in these conditions. Furthermore, we do not have
any radiative loss in the convection zone (Takasao et al. 2013).

Note that in these simulations, we do not have a self-consistently generated
heating in the corona like some of the 3-Dmodels (see, for example Hansteen et al.
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2010). Hence, we also add background heating terms to compensate for the radia-
tive cooling. At t=0, we ensure there is no net dissipation or heating, and define the
heating term at each grid point to be the same value as the radiative cooling at that
point, following (Roussev et al. 2001).

The radiative loss function has a complicated dependence on the temperature,
consisting of a general reduction and localized bumps. If due to a numerical error,
the cooling term becomes slightly smaller than the heating term, the grid point will
be at a higher temperature. However, at the next iteration, this results in yet lower ra-
diative cooling, and more heating would ensue. On the other hand, a slightly higher
cooling can result in a runaway cooling of the system. This instability depends on
the behavior of the heating and cooling terms with temperature (see Parker 1953;
Shimojo et al. 2001, for details). Thus, even after the inclusion of the heating term,
numerical errors may build up over time, and result in runaway heating or cooling
of the system. To mitigate this, we impose a numerical floor on the “net heating”
term, i.e., if |H +C| < 10−3H , there is no heating or cooling in that grid cell (hereH

is the heating term and C is the cooling term). This, to some extent, mitigates the
effect of numerical instability in the radiation case.

With the system defined, we then perform a perturbation of the flux sheet in
the vertical velocity as:

Vz = A cos
(
2π

x−Xmax/2

λp

)
, (6.9)

where the perturbation is performed in the middle of the flux sheet, with an ampli-
tude of A = 0.6 km s−1, and a λp = 6200km. This wavelength is almost the most
unstable wavelength for linear Parker instability. Note that the perturbation is per-
formed only within Xmax/2− λp/4 < x < Xmax/2 + λp/4 and zfsL < z < zfsU .

6.1.3 Plasmoid detection

Most of our simulations show plasmoid formation as the emerging flux interacts
with the ambient magnetic field. To understand the difference in plasma temper-
ature, density, and velocities resulting from the reconnection process, we need to
understand the properties of plasmoids and jets. To this end, we develop a simple
scheme to detect plasmoids from the simulations.

Visually, plasmoids show strong pressure signatures inmodels of both CH and
QS. We consider the pressure around the reconnection region for performing the
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Figure 6.2: Graphic showcasing plasmoid detection in model_QSR. The color map
shows pressure contours, while the blue dots encircle the detected plasmoid.

plasmoid detection. For the pressure 2-D array at any time step, we perform blob
detection using the Difference of Gaussians (DoG) approach. In essence, this algo-
rithm performs the detection of blobs based on differences between successively
smoothed images (for more details, see Lowe 2004). We use a minimum sigma
of 0.1, a maximum of 10, and a threshold level of 2 × 10−3 to remove overlapping
detection. A high threshold level means only very bright blobs will be detected.
However, this results in numerous blobs being detected in the snapshots, not all of
which may be plasmoids. Plasmoids typically have a strong maximum pressure at
the center. Hence any blob with nearly uniform pressure distribution would not be a
plasmoid. To quantify the presence of such outlier values of pressure, we compute
the standard deviation of the pressurewithin the blobs and consider only thosewith
σ (pressure) more than 10−4 in code units. Such blobs with outlier pressure values
qualify as plasmoids. An example detection using the algorithm on a snapshot of
pressure from QS is shown in Fig. 6.2, where the plasmoid is shown with a blue-
color dotted circle. Note that the plasmoids being depicted further on are a result
of the application of this algorithm.

6.2 Results

We have performed the simulation of flux emergence for the two background mag-
netic topologies. We summarize the general dynamics and thermodynamics of
the evolution of flux emergence in the two topologies for the case with resistivity,
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thermal conduction, and radiation. We emphasize that the analysis for cases with
only some of the redistribution terms indicates nomajor difference in the dynamics
while showing differences only in the thermodynamics.

6.2.1 QS model: Thermodynamics

Figure 6.3: Temperature contours with magnetic field lines and velocity vectors
for flux emergence in model_QSRTR. The white box in the final panel depicts the
jet formed in the simulation. Note that this is not the full simulation box and only
depicts the region where the dynamics of interest occur.

We consider the QS simulation with resistivity, thermal conduction, and radia-
tion (henceforth model_QSRTR). We depict the evolution of the system at four time
steps in Figs. 6.3 (temperature) and 6.4 (density). Over plotted are the magnetic
field lines (solid black lines), and the velocity vectors at different grid points. Note
that these plots only show a small part of the complete simulation box where the
dynamics of interest occur.

The flux sheet, perturbed by the vertical velocity, rises up into the corona till
about 7 Mm. At this height, the drift velocity vd is strong enough (due to both the
increased current density and the reduced density) that localized resistivity is ac-
tivated, causing magnetic reconnection. The reconnection causes plasmoids to
form, which are then ejected outwards on either side. The plasmoids have a maxi-
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Figure 6.4: Similar to Fig. 6.3, but for density. Note that the jets are now enclosed
by the black box.

mum1 temperature of≈ 3.6×105 K, with amedian2 temperature of≈ 3×104 K. Their
maximum densities are typical≈ 1014 cm−3, while themedian density within a plas-
moid is≈ 1013 cm−3. We infer that the plasmoids are cold due to increased radiative
loss from increased density. The plasmoid in model_QSRTR have sizes ranging from
≈ 360− 630 km. They travel outward with a typical maximum3 speed of≈ 75 km/s,
with a typical median speed of ≈ 50 km/s. These plasmoids collide with the ambi-
ent atmosphere and result in the formation of jets. The radiative cooling results in
dense, cool jets at temperatures of≈ 2−5×104 K, traveling outward with a velocity
of≈ 50 km/s. The forward edge of the jet corresponding to the region of interaction
of plasmoids with the ambient atmosphere has high densities (≈ 1010−1012 cm−3),
while the body of the jet has low densities (≈ 1010 cm−3), as seen in Fig. 6.5. The
dense jets are reminiscent of the slingshot-like motion of plasma from Yokoyama
& Shibata (1996). We also see a hot jet on top of the cool jet. This jet does not
experience the same cooling as the cool jet since the density here is not enough
to cool the region down. The hot jet has a characteristic density of ≈ 1010 cm−3,
and temperature of the order of ≈ 106 K. Finally, the jets in model_QSRTR are very

1Calculated as mean of maximum temperature across all plasmoids

2Calculated as the mean of the median temperature across all plasmoids

3Calculated as mean of maximum velocity across all plasmoids
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Figure 6.5: Temperature (top) and density (bottom) contours with magnetic field
lines and velocity vectors for the cool and hot jets identified in Fig. 6.3. We have
modified the colour map range to ensure the thermal and density structures in the
jet are brought out well.

low-lying (≈ 4− 6) Mm, and almost horizontal at late times.

6.2.2 CH model: Thermodynamics

We now consider the CH simulation with resistivity, thermal conduction, and radia-
tive losses (henceforth model_CHRTR). We depict the evolution of the system at four
time steps in Fig. 6.6 and 6.7. The figures depict the evolution of temperature and
density, the magnetic field lines (solid black lines), and the velocity vectors at dif-
ferent grid points. The blue circles contain the plasmoids in the snapshots. Note
again that these plots only show a small part of the complete simulation box where
the dynamics of interest occur.

The flux sheet, perturbed by the vertical velocity, rises up into the corona till
about 7 Mm. We find in these simulations that the height of flux emergence is
not dependent on the background topology. Similar to the QS scenario, here again,
magnetic reconnection occurs and results in the formation of plasmoids. These
have similar sizes as those in the QS scenario, i.e., 360− 630 km in radius, and have
a maximum temperature of ≈ 5 × 105 K, while they have a median temperature of
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Figure 6.6: Similar to Fig. 6.3, but for the CH scenario.

Figure 6.7: Similar to Fig. 6.6, but for density.

≈ 3 × 104 K. These plasmoids have a typical maximum density of ≈ 1014 cm−3,
with a median density of 1013 cm−3. They travel outwards at a maximum speed
of ≈ 100 km/s, while they have an average speed of ≈ 60 km/s. The properties of
plasmoids in model_CHRTR are thus similar to the oneswe find in model_QSRTR. Note
while the location of perturbation causes one loop to rise, the highermodes are also
activated, seen here as secondary loops (near x=47 and 52Mm). The expelled, cool
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Figure 6.8: Temperature (left) and density (right) contours with magnetic field lines
and velocity vectors for the cool and hot jets identified in Fig. 6.6. We have modi-
fied the color map range to ensure the thermal and density structures in the jet are
brought out well.

plasmoids strike these higher-order modes. These are liberated along the outflow
to the left of x=50 Mm. However, we do not see the formation of the cool jet in
this case. Rather, the jet itself in the final snapshot of Fig. 6.6 and 6.7 suggests
the formation of only the hot jet. This hot jet has characteristic temperatures of
≈ 106 K and densities of ≈ 1011 cm−3, as seen in Fig. 6.8. The jet has velocities of
≈ 50 km/s, with minimal density stratification. We also find downflows occurring
outside of the loop-background interaction region. Along with the hot jet, we also
find that a hot loop forms near the cool loop due to the interchange reconnection.
This loop is ≈ 7 Mm high, at a temperature of ≈ 105 − 106 K, and at densities of
≈ 1011 cm−3.

6.3 Discussion and comparison

In this work, we developed 2.5DMHD simulations of flux emergence in the solar at-
mosphere with background magnetic field topology mimicking CH and QS regions.
The QS box is endowed with a horizontal ambient field, while the CH box is pro-
vided with an oblique field. Thermal conduction and optically thin radiative losses
are included, while localized anomalous resistivity is incorporated to cause explo-
sive reconnection.
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The rising loop undergoes reconnectionwith the ambientmagnetic field in both
setups. This gives rise to the formation of plasmoids. In both model_CHRTR and
model_QSRTR, we find the plasmoids have characteristic sizes from 360-630 km. In
model_QSRTR, we find the plasmoids move at max. speed of ≈ 70 km/s, while in
model_CHRTR they move with a max. speed of ≈ 100 km/s. The plasmoids have
densities of ≈ 1013 cm−3 in both the cases. They have median temperatures of
≈ 2− 6× 104 K while having a maximum temperature of ≈ 105 K.

As a result of this reconnection process, jets are formed in both simulations.
In model_QSRTR, we find the existence of both a hot (≈ 106 K) and cool (≈ 104

K) jet, while model_CHRTR shows the formation of only the hot jets at ≈ 106 K. In
model_CHRTR, a hot loop is formed near the cool loop due to interchange reconnec-
tion. This hot loop (≈ 106 K) has low densities (≈ 1011 cm−3) at marginally lower
temperatures than the hot jet. Such a hot loop is however not seen in model_QSRTR.

Plasmoids have been observed in the solar atmosphere. Patel et al. (2020)
observe and track plasmoids in an off-limb flare. They find these plasmoids in the
current sheet to have sizes of ≈ 5000 km, with velocities of ≥ 190 km/s. Mulay
et al. (2023) observe and compute properties of plasmoids in AR jets. They ob-
serve plasmoids with typical size of ≈ 3000 km (width), characteristic temperature
of≈ 106 K, and densities of≈ 108 cm−3. Chen et al. (2022), similarly find plasmoids
with temperatures of≈ 106 K, but find the sizes to range from≈ 800−2300 km, with
velocities from 60 − 185 km/s. We note that these plasmoid observations are not
consistent with those seen in any of the simulations. These plasmoids are formed
due to reconnection either much higher in the atmosphere or due to different con-
ditions than those in our simulations.

Singh et al. (2012), however, observe plasma ejecta in jets in Ca II H filtergrams,
and demonstrate them to be ≈ 300− 1500 km in size while moving at a velocity of
≈ 35 km/s. Since these plasmoids are seen in Ca II, we may assume they may be
at chromospheric temperatures. Such plasmoids are similar to those observed in
model_CHRTR, while the final jet-loop structure is also similar to that observed by
Singh et al. (2012). van der Voort et al. (2017) observe signatures of plasmoids in
Ca II K wing at velocities ≈ 40 km/s. Tiwari et al. (2022) find “bright dots” of the
size≈ 675±300 km, which are similar in size to the largest of plasmoids forming in
our simulations. These dots have low velocities (≤ 30 km/s), with significant emis-
sivity in the 174 Å passband, corresponding to ≈ 1− 2× 106 K. Tiwari et al. (2022)
compare their observations with Bifrost simulations, and find that these dots form
due to magnetic reconnection between emerging flux with pre-existing flux. The
simulations indicate reconnection very low in the atmosphere, with a significant
contribution of plasma in the transition region. Peter et al. (2019) show the genera-
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tion of plasmoids≈ 300− 600 km in size, with maximum temperatures of≈ 6× 104

K and density of≈ 1011 cm−3. Thus, these bright dots and plasmoids appear to sat-
isfy some aspects of the plasmoids seen in our simulations. However, the general
plasmoids seen in these simulationsmay not be observed as individual events with
current instrumentation in the first place.

The plasmoid formation gives rise to and feeds jets, which have typical veloc-
ities of ≈ 50 km/s, densities of ≈ 1011 cm−3, and temperature of 106 K. Mulay et al.
(2023) find jets with velocities of ≈ 225 − 275 km/s at 106 K, and density of ≈ 108

cm−3. Clearly, once again the jets we see are not consistent with AR jet structures.
However, Singh et al. (2012) observe jets in the chromosphere, and find velocities
ranging from ≈ 10 − 70 km/s. These are similar to the jet velocities we see in our
simulations. However, the observations of Singh et al. (2012) are in Ca II H, which
does not form at 106 K corresponding to the jet temperatures in our simulations.
Whether the large-scale jets we find in our simulations provide observable signa-
tures in Ca II H line will need to be probed with the correct treatment of radiation
interaction with plasma.

We have seen in Ch. 5 how the specific intensity and velocity signatures are
shown as discriminators of CHs andQS in the lower atmosphere. However, the non-
thermal widths and the spectral profile shapes indicate an inherent similarity in the
processes giving rise to the emission themselves. From the simulations presented
in this chapter, we find similarities in the properties of the plasmoids which form
in both the setups and differences in the properties of the resultant jets. The next
step in this work is to compute the emission in spectral lines, which would enable
a more stringent comparison in terms of the observables. We will be performing
spectral response computation for lines forming in the upper transition region and
the corona. Once we understand the thermodynamics of these simulations, we
are next looking forward to performing flux emergence experiments in a funnel-
field topology, which would be a much better representative of a CH setup. Such a
comparison will enable us to understand, in somemeasure, the physical processes
that give rise to QS heating and the emergence of solar wind.
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Chapter 7

Parting thoughts and paths for the
future

Udvayaṃ tamasaspari Beholding the up-springing light
jyotiṣpaśyanta uttaram above the darkness,
devaṃ devatrā sūryam We approach the divine Sun
aganma jyotir uttamam among the gods, the excellent light.

-Rigveda 1.50.10

In this thesis, we have asked four major science questions. We first ask what
the specific source regions of the solar wind are and if it is possible to forecast
the solar wind given changing solar coronal conditions. To address this question,
we have developed a DL solar wind speed forecasting model named WindNet to
perform the forecasts given a sequence of full-disc EUV images in the 193 Å or
211 Å passband. Following that, we ask if impulsive heating is viable to maintain
the solar corona at amillion degrees Kelvin. To estimate the statistical properties of
these events, we employ the statistical impulsive heatingmodelPSM in conjunction
with a DL inversion scheme iPSM on QS light curves in both EUV and X-rays. We
then ask how different these locally heated QS regions are with respect to CHs, and
study them in the chromosphere and transition region. To discern the differences
in the dynamics of these two regions, we use the Mg II h & k, C II 1334 Å and Si IV
1393 Å spectral lines, and study them as a function of the underlying magnetic
flux density. Finally, we ask what sort of physical picture may be prevalent in CHs
and QS, giving rise to the differences higher up in the corona. To explore this, we
probe the dynamics of solar wind emergence and coronal heating in a CH and QS
setup through flux emergence from the convection zone. The main results from
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this thesis are:

1. Full disc EUV intensity image time series possesses information regarding
the solar wind source regions and can be used to perform forecasts of solar
wind speed. A non-linear DL-based model can learn associations between
source regions and the correspondingwind speed to generate forecastswhile
outperforming baseline models, especially with large time horizons.

2. The DL model WindNet identifies CHs as sources of the fast solar wind in
the 193 Å data, while the slow wind is primarily associated with ARs, with the
timing of association in the slowwind beingmissed. While in a nascent stage,
interpretable AI is a strong candidate for understanding physical associations
between solar wind modalities and sources.

3. Impulsive events are a viable source of heating the solar corona, as seen in
EUV. These EUV-impulsive events occur with a typical frequency of 2.5 events
min−1, have a slope of distribution of events ≥ 2, and last for ≈ 15 minutes.
The events show a predominance of conduction-dominated cooling and point
to an energy reservoir that may be depleted by large events occurring inter-
mittently or small events occurring frequently.

4. In X-rays, these impulsive events are very small (≤ 1023 ergs) and have much
flatter event distribution. They have very high frequency (≈ 25 events min−1),
and have time scales of ≤ 11 minutes. The high frequency of events follows
from the very low amplitude of these events, again strongly pointing to an
energy reservoir in the quiet corona.

5. QSandCHs, which are apparently undifferentiated in the chromosphere, show
clear differences if the underlying photosphericmagnetic flux density (i.e. |B|)
is taken into account. The chromospheric Mg II h & k features and C II 1334 Å
lines show excess intensity, reduced redshifts, and blueshifts in QS with re-
spect to CHs, while the transition region Si IV 1393 Å line shows excess in-
tensity, increased redshift and reduced blueshift in QS. The C II line shows
excess width in CHs, while both the regions show significant skewness and
flatness departures fromaGaussian. However, the spectral shapes are signif-
icantly similar in bothCHs andQS. Furthermore, the chromospheric blueshifts
(redshifts) are well correlated with the transition region blueshifts (redshifts),
while the chromospheric redshifts and transition region blueshifts are also
well correlated. Finally, the downflows were preferentially decelerated in QS,
while the upflows were found to be accelerated in CHs.
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6. These observations, taken together, represent a dichotomy between the chro-
mosphere and transition region. The observationsmay be elegantly explained
due to the prevalence of impulsive heating in different magnetic field topolo-
gies. Interchange reconnection in CHs between the majorly open field lines
and closed field lines may result in bidirectional flows, which, depending on
the temperature and height, would be seen as correlated upflows, downflows,
or bidirectional flows as seen in this work. The closed loop reconnection in
QS does not allow plasma to escape, resulting in increased deceleration of
downflows due to trapped plasma within the loops. Contrarily, the outflow-
ing plasma is accelerated in the CHs due to the open flux system. Finally, if
the interchange reconnection occurring low in the atmosphere results in solar
wind switchbacks, our measurements provide constraints for such models.

The numerous results that have come out of this thesis have raisedmanymore
questions regarding the origin of solar wind and the heating of the solar corona.
Below, we outline a number of science questions and analyses that we would like
to perform as through the understanding generated from this thesis:

1. Localizing solar wind source regions using deep learning: We have seen how
EUV intensity data already contains information pertaining to the source re-
gions of the solar wind and that this information may be picked up by DL
methods. We now pose the following problem: given multi-wavelength im-
ages(and thus, temperatures covering from the photosphere to the corona),
can a DL model classify the images as giving rise to a fast and slow wind?
And can such a model be queried to localize the solar wind sources? This
work is underway.

2. Evolution of solar wind: Major solar wind forecasting codes hit a roadblock
due to the evolution of structures within the solar wind. A measure of infor-
mation loss in the injected coronal structures due to the evolution towards
the Earth is needed. We shall next study specific source regions on the Sun
to understand their relation to solar wind measurements near Earth in terms
of loss of information. Some preliminary study has been performed through
the work of a master’s student of Prof. Durgesh Tripathi.

3. Updates to iPSM: The PSM model has numerous assumptions, the most crit-
ical of which are: (i). Relation between rise and fall time, (ii). Lack of con-
straint between event amplitude and time-to-next-event, (iii). Lack of filling
factor. Similarly, the iPSM inversion also has some constraints: (i). Inability
to perform inversions for all 5 parameters in the same pass, and (ii). Needs
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to be retrained for different instrument measurements to incorporate noise.
These are some upgrades that need to be performed to make a truly general
inversion scheme for impulsive heating models of the solar corona. We in-
tend to take this upgrade up in the near future.

4. iPSM application to stellar light curves: How do the typical flaring frequency,
time scale, distribution of events, and amplitudes correspond for stars of dif-
ferent types during quiet times? Are the coronae of these stars also impul-
sively heated? How do these properties depend on the stellar type, metal-
licity, and surface gravity? In essence, we seek to connect the properties
of small events in the corona to the dynamics within the star and check the
mechanisms that give rise to footpoint shuffling in producing these impulsive
events.

5. Mapping flows across the solar atmosphere: We have seen the excess up-
and down-flows in the chromosphere as a function of the underlying pho-
tospheric magnetic flux density. However, the question remains as to how
these flowsare propagated across individual field lines across different heights.
To this end, we intend to study CHs jointly using SST, IRIS, and EIS spectra
using a Potential field extrapolation. Considering the flows through different
open field lines would then tell us how the flows – starting from the lower
chromosphere to the upper transition region – end up as solar wind flows in
the corona. Furthermore, we also intend to study the momentum transport
across these temperatures and along these field lines, which would provide
stronger constraints than correlations regarding mass flows in the solar at-
mosphere.

6. Inference using data from Aditya-L1: Aditya-L1 is India’s first solar mission
to be put at the L1 point in space. Many of the studies performed in this thesis
tie in well with the mission objectives of Aditya-L1, especially instruments
like the Solar Ultraviolet Imaging Telescope (SUIT) and Visible Emission Line
Coronagraph (VELC). Typically, we intend to leverage SUIT and VELC to study
possible plasma propagation in CHs from the chromosphere to the corona
to estimate the solar wind mass loss and transfer. We shall also be using
SUIT to study coupling with other layers of the solar atmosphere – especially
in the more quiescent regions. Studying these different regions of the solar
atmosphere as a function of the underlying magnetic field in the impulsive
heating paradigm then provides us with insights into the energy budget and
losses, which is critical to study the heating of the solar corona.
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